RETROFIT FEASIBILITY STUDY Honolulu International Airport

Small Municipal Separate Storm Sewer System File No. HI S000005

Prepared For:

State of Hawaii Department of Transportation Airports Division 400 Rodgers Boulevard, Suite 700 Honolulu, Hawaii 96819-1880

August 2010

Version 1.0

TABLE OF CONTENTS

1.0	CERTIFICATION AND LIMITATIONS	.1
2.0	INTRODUCTION	.2
2.1	TASKS	.2
2.2	SPECIFIC CONDITIONS AT HNL	.2
3.0	HNL SMALL MS4 CHARACTERISTICS	.3
3.1	HNL SMALL MS4 SUMMARY	.4
3.2	CLIMATOLOGIC CONDITIONS	.4
3.3	GEOLOGY AND HYDROGEOLOGY	.5
3.	3.1 Regional Geology	5
3. 3	3.2 Site Geology	د 6
3.	3.4 Site Hydrogeology	6
4.0	WATERSHED CHARACTERIZATION	.7
4.1	MANUWAI WATERSHED	.7
4.2	KEEHI WATERSHED	.7
5.0	RETROFIT GOALS	.8
5.1	REDUCE POLLUTANTS OF CONCERN	.8
5.2	TRAPPING TRASH AND FLOATABLES	.9
5.3	REDUCE RUNOFF VOLUMES	.9
5.4	STORM WATER DEMONSTRATION AND EDUCATION	.9
5.5	PERFORMANCE GOAL SUMMARY	.9
6.0	DESKTOP ANALYSIS	10
6.0 6.1	DESKTOP ANALYSIS	10 10
6.0 6.1 <i>6</i> .	DESKTOP ANALYSIS	10 10 <i>10</i>
6.0 6.1 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SP 3 Naw Storage balow Outfalls	10 10 10 10
6.0 6.1 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System	10 10 10 10 11
6.0 6.1 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways	10 10 10 11 11 11
6.0 6.1 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits	10 10 10 11 11 11
6.0 6.1 6. 6. 6. 6. 6. 6. 2	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits ON-SITE RETROFITS Image: Convert Store Stor	10 10 10 11 11 11 11
6.0 6.1 6. 6. 6. 6. 6. 6.2 6.2	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits ON-SITE RETROFITS OS-7 Hotspot Operations 2 OS-8 Small Parking Lot Retrofits	10 10 10 11 11 11 12 12
6.0 6.1 6. 6. 6. 6. 6. 6.2 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets	10 10 10 11 11 11 12 12 12 13
6.0 6.1 6. 6. 6. 6. 6.2 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops	10 10 10 11 11 11 12 12 12 13 14
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls. 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways. 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS 2.1 OS-7 Hotspot Operations. 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets. 2.4 OS-10 Individual Rooftops. 2.5 OS-11 Little Retrofits	10 10 10 11 11 11 12 12 12 13 14 14
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits ON-SITE RETROFITS ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS 13 Underground Petrofits	10 10 10 10 11 11 11 12 12 13 14 14 14 14 14
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 7.0	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits	10 10 10 11 11 11 12 12 13 14 14 14 14 14 15
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 7.0	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits	10 10 10 11 11 11 12 12 12 13 14 14 14 14 15 15
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits STORM DRAIN RETROFITS Hot Spot RETROFITS	10 10 10 11 11 11 12 12 13 14 14 14 14 15 15
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits ON-SITE RETROFITS ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits 2.7 OS-10 RETROFITS HOT SPOT RETROFITS HOT SPOT RETROFITS	10 10 10 11 11 11 12 12 12 13 14 14 14 15 15 15
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 7.0 7.1 7.2 7. 7. 7.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS 0N-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits 2.7 OS-10 RETROFITS 2.1 Triturators 2.2 Maintenance Baseyard Sweeper Rubbish	10 10 10 11 11 11 12 12 13 14 14 14 15 15 16
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 7.0 7.1 7.2 7. 7. 7. 7.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits 2.7 OS-13 Underground Retrofits 2.7 OS-13 Underground Retrofits 2.1 Triturators 2.2 Maintenance Baseyard Sweeper Rubbish 2.3 Ualena Street Tenants	10 10 10 11 11 11 12 12 12 13 14 14 14 14 15 15 16 16
6.0 6.1 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	DESKTOP ANALYSIS STORAGE RETROFITS 1.1 SR-1 Modify Existing Ponds 1.2 SR-2 Storage above Roadway Culverts 1.3 SR-3 New Storage below Outfalls 1.4 SR-4 Treatment in the Conveyance System 1.5 SR-5 Storage in Transport Right of Ways 1.6 SR-6 Large Parking Lot Retrofits 0N-SITE RETROFITS ON-SITE RETROFITS 2.1 OS-7 Hotspot Operations 2.2 OS-8 Small Parking Lot Retrofits 2.3 OS-9 Individual Streets 2.4 OS-10 Individual Rooftops 2.5 OS-11 Little Retrofits 2.6 OS-12 Landscapes – Hardscapes 2.7 OS-13 Underground Retrofits 2.8 Maintenance Baseyard Sweeper Rubbish 2.9 Maintenance Baseyard Sweeper Rubbish	10 10 10 11 11 11 12 12 13 14 14 14 15 15 16 16 16 16 16 16 16 16 16 16

i

7.5	PROJECT RECOMMENDATIONS1	9
8.0	SUMMARY	1
9.0	REFERENCES	2

TABLES

TABLE 1: BASINS AND BASIN AREAS	.3
TABLE 2: SMALL MS4 DRAINAGE STRUCTURES	.4
TABLE 3: IMPAIRED RECEIVING WATERS	.8
TABLE 4: RETROFIT PERFORMANCE GOALS	.9
TABLE 5: HNL PARKING LOTS	13
TABLE 6: SCORING CRITERIA USED FOR RANKING	16
TABLE 7: POLLUTANT LOAD CALCULATION PARAMETERS	18
TABLE 8: UNIT COSTS OF RETROFIT BMPS	18
TABLE 9: POLLUTANT REMOVAL EFFICIENCY OF RETROFIT BMPS	19
TABLE 10: FINAL LIST OF POTENTIAL RETROFIT BMPS AT HNL	20

ATTACHMENTS

ATTACHMENT I – FIGURES ATTACHMENT II – AIRPORT MODERNIZATION PLAN RENDERING ATTACHMENT III - STORM DRAIN RANKING AND EXAMPLE RETROFIT ATTACHMENT IV - BLANK RRI FORM AND FIELD GUIDE ATTACHMENT V - DESKTOP ANALYSIS RETROFIT LIST ATTACHMENT VI - FINAL POTENTIAL RETROFIT LIST AND RRI FORMS ATTACHMENT VII - HOTSPOT RRI FORMS

1.0 CERTIFICATION AND LIMITATIONS

EnviroServices & Training Center (ETC), LLC has completed this Retrofit Feasibility Study for the Honolulu International Airport (HNL). ETC's findings and conclusions presented in this report are professional opinions based solely upon visual observations of sites within HNL, government regulations, and information available about storm water retrofits at the time of this study.

This report is intended for the sole use of the Client, Department of Transportation – Airports Division, exclusively for HNL. The scope of services performed in execution of this project may not be appropriate for satisfying the needs of other users, and any use or reuse of this report or the findings and designs presented herein is unauthorized and at the sole risk of said user.

ETC makes no guarantee or warranty; either expressed or implied, except that our services are consistent with good commercial or customary practices designed to conform to acceptable industry standards and governmental regulations. No warranty or representation, expressed or implied, is included or intended in its proposal, contracts, or reports.

The retrofits proposed in this study are evaluated on a "concept" level and will require final engineering details prior to construction. The design engineer will hold the ultimate responsibility to determine whether a proposed retrofit can be implemented based on the final engineering study and design. DOTA will implement those retrofits approved by a certified engineer as funds become available.

Katie Davis

Katie Davis Environmental Scientist

Alford Harman

Clifford Wassman Engineer

2.0 INTRODUCTION

As part of the National Pollutant Discharge Elimination System (NPDES) Small Municipal Separate Storm Sewer System (MS4) permit requirements for Honolulu International Airport (HNL), State of Hawaii, Department of Transportation, Airports Division (DOTA) will complete a retrofit feasibility study on the existing MS4 discharges to receiving waters listed pursuant to Section 303(d) of the Clean Water Act for pollutants such as sediment, siltation, turbidity, and/or trash. Under this study, DOTA will plan, strategize, and implement retrofits that shall include water quality Best Management Practices (BMPs).

2.1 Tasks

DOTA made extensive use of the Center for Watershed Protection's national publication on storm water retrofitting, *Urban Stormwater Retrofit Practices* (Schueler *et al.*, 2007) (USRM) in order to indentify and complete the tasks involved in a retrofit study.

- Task 1 Develop Performance Goals Performance goals were identified for HNL based on the 303(d) list of impaired waters, known pollutants or issues in the current MS4, and goals of the storm water program as a whole.
- Task 2 Desktop Analysis A desktop analysis of HNL and the two associated watersheds was conducted to develop an initial ranking of retrofit potential for DOTA spaces based on the performance goals identified in Task 1.
- Task 3 Retrofit Inventory An inventory of sites was compiled that had the potential for the inclusion of retrofits based on the desktop analysis in Task 2.
- Task 4 Field Investigation Fieldwork was conducted on July 19, 2010, by ETC and focused on the sites identified in Task 3. Evaluations of the sites were recorded on the Retrofit Reconnaissance Investigation (RRI) form from the USRM.
- Task 5 Retrofit Evaluation & Ranking Retrofit projects were evaluated based on pollutant load reductions, cost-effectiveness, and other screening factors derived from the initial performance goals. These projects were discussed with DOTA engineers to determine the strongest candidates for design work.
- Task 6 Final Report A final report was drafted detailing the conceptual retrofits selected for further design and implementation at HNL.

2.2 Specific Conditions at HNL

The retrofit feasibility study at HNL took into consideration additional restrictions imposed on projects due to its status as an active airport. Federal Aviation Administration (FAA) rules prohibit building wildlife habitats due to the hazards that birds may pose to aircraft safety. Therefore, large wetlands and other retrofits that have the potential to attract birds will not be considered in this study.

Additionally, at the time of this study, an airport modernization plan has been developed. Therefore, potential retrofits were also evaluated based on the current modernization plans in order to determine whether the future construction would have an impact on the implementation of that retrofit.

3.0 HNL SMALL MS4 CHARACTERISTICS

DOTA is responsible for operating and maintaining the Honolulu International Airport (HNL) and the associated infrastructure, including the storm water drainage system (Small MS4) (Attachment I, Figure 1). HNL is divided into various basins based on the drainage in each particular area (Table 1).

	AREA*			AREA*	
BASIN	(ACRE)	WATERSHED	BASIN	(ACRE)	WATERSHED
A1	18.72	Keehi	B17	73.47	Manuwai
A2	102.64	Keehi	B18	52.56	Manuwai
A3	54.46	Keehi	C1	309.03	Manuwai
A4	75.53	Manuwai	C2	118.46	Manuwai
A5	9.08	Manuwai	D1	10.76	Manuwai
A6	124.72	Manuwai	D2	5.47	Manuwai
A7	18.02	Manuwai	D3	5.62	Manuwai
A8	59.08	Manuwai	D4	9.48	Manuwai
A9	46.37	Manuwai	D5	5.58	Manuwai
A10	184.54	Manuwai	D6	6.16	Manuwai
B3	189.00	Manuwai	D7	8.37	Manuwai
B4	103.63	Manuwai	D8	3.43	Manuwai
B5	36.63	Manuwai	D9	7.16	Half/Half
B6	45.90	Manuwai	D10	212.98	Half/Half
B7	70.14	Manuwai	D11	11.05	Keehi
B8	50.26	Manuwai	D12	4.21	Keehi
B9	89.97	Manuwai	D13	7.44	Keehi
B10	52.03	Manuwai	D14	29.93	Keehi
B11	13.08	Manuwai	D15	10.23	Keehi
B12	24.58	Manuwai	D16	7.34	Keehi
B13	51.70	Manuwai	D17	8.22	Manuwai
B15	14.22	Manuwai	Е	39.22	Keehi
B16	38.88	Manuwai			

 TABLE 1: BASINS AND BASIN AREAS

*Areas are approximate based on the HNL autocad drainage map.

3.1 HNL Small MS4 Summary

HNL contains four active runways, thirty taxiways, and one maintenance baseyard within 4,520 acres on southern Oahu (Attachment I, Figure 1). Over 20 million visitors are transported through the airport by 27 international and domestic carriers, 3 interisland airlines, and 4 commuter airlines. This area is also utilized by industrial and commercial tenants that perform activities ranging from aircraft maintenance and fueling to autobody repair and cargo operations. These areas are divided into separate basins (Table 1) which drain storm water through the Small MS4 structures which are summarized in Table 2.

STRUCTURE TYPE	TOTAL NO.
Box Culvert	33
Catch Basin	249
Head Wall	14
Inlet	795
Manhole	401
Outfall	152
Evaporation Pond	3
Trench Drain	47
Open Channels	6
Oil Water Separators	97

TABLE 2: SMALL MS4 DRAINAGE S	STRUCTURES
-------------------------------	------------

Storm water protection has been a concern at HNL prior to this retrofit feasibility study. Several permanent storm water Best Management Practices (BMPs) are already in place at HNL. These retrofits include:

- 97 oil water separators, 68 of which are operated and maintained by DOTA and 29 by tenants;
- 3 evaporation ponds that receive water from wash pads and hardstand areas where aircraft maintenance is conducted;
- 6 channels stabilized with vegetation;
- 1 Koi pond garden located near the Central Concourse;
- 1 swale between Taxiway "A" and Runway "8L" treating water from Manuwai Canal; and
- Small filter strips between facilities and the roadway drainage on the following streets:
 - o Lagoon Drive
 - Palekona Street
 - o Iako Place
 - o Lauhoe Place
 - o Pohakulana Place
 - o Keehi Place
 - o Mokuea Place
 - o Nakolo Place
 - o Kapalulu Place
 - Kaulele Place
 - o Iolana Place

4

- o Aolele Street
- Paiea Street
- Elliot Street.

3.2 Climatologic Conditions

The main features of Oahu's climate include mild temperatures throughout the year ranging from 88°F (31°C) to 74°F (23°C) and moderate humidity of 53% during the day. The northeasterly trade winds generated by a high pressure center north of the islands are the dominant factor that governs the climate in Hawaii. Two mountain ranges on Oahu, the Koolau Mountains which extend along the northeastern side of the island and the Waianae Mountains which extend along the southwestern side of the island, influence every aspect of the climate. Both mountain ranges serve to block the trade wind moisture and as a result, showers occur almost daily on the windward side while on the leeward side showers are light. The trade winds are generally strongest during the summer (May through October) and are periodically disrupted by storms in the winter (October through April), which result in heavy rain and thunderstorms throughout the island. At the site, the average annual rainfall reported by the U.S. Department of Agriculture is between 20 to 25 inches, most of which occurs during the winter months.

3.3 Geology and Hydrogeology

3.3.1 Regional Geology

Oahu is formed by the erosional remnants of two shield volcanoes. These are the Waianae range to the west and the Koolau range to the east. The Waianae volcano is estimated to have formed 2.4 to 3.6 million years before present. It consists of a tholeiitic lava shield with a thick cap of transitional to alkalic rock. Rejuvenation-stage volcanics of undifferentiated age occur in Kolekole Pass and on the south flank of the Waianae shield. Dike orientations define northwest and southwest rift zones (Macdonald, et al., 1983).

The Koolau volcano is estimated to have formed 1.8 to 2.6 million years before the present. It consists of a tholeiitic lava shield and lacks an alkalic cap. It has well defined major dike complex trending northwest-southwest. A third, minor rift zone referred to as the Kaau rift trends southward from Kaau crater, near the upland crest of the Koolau Ridge. After a long dormant period and periods of deep erosion, the Koolau volcano developed abundant and scattered rejuvenation-stage vents, typically aligned on northeast-striking fissures (Macdonald, et al., 1983).

3.3.2 Site Geology

The soil at the site is mapped as fill land, mixed (FL). FL consists of dredged material from the ocean, material from nearby areas, garbage, and general material. This land type occurs near Pearl Harbor and in areas of Honolulu adjacent to the ocean. The land type is used for urban development including airports, housing areas, and industrial facilities (USDA, 1972). In addition, previous investigations encountered coralline sand to a depth of 7 feet below ground surface (bgs) and fine grained, well sorted, gray sand below 7 ft bgs (J. R. Herold & Associates, 1999). At a depth below 11 to 13 ft bgs, it was noted that the soil type appeared to be dense, gray gravel (Dames & Moore, 1993).

3.3.3 Regional Hydrogeology

The primary drinking water in the Hawaiian Islands is drawn from basal groundwater. Basal groundwater is formed by rainwater percolating down through the residual soils and permeable volcanic rock. The portion of the island situated below sea level, except within rift zones of the volcanoes, is saturated with ocean salt water and thus forms a basal lens called the "Ghyben-Herzberg" lens. A zone of transition between the fresh groundwater and the ocean salt water occurs due to the constant movement of the interface as a result of tidal fluctuations, seasonal fluctuations in recharge and discharge and aquifer development (Macdonald, et al., 1983).

Downward percolation of rainwater may be stopped by impermeable layers such as dense lava flows, alluvial clay layers and volcanic ash. The groundwater then forms a perched or high level aquifer, which is not in contact with salt water. Recharge of the aquifer occurs in areas of high rainfall, which are the interior mountainous areas. The groundwater flows from the recharge areas to the areas of discharge along the shoreline. Frictional resistance to groundwater flow causes it to pile up within the island until it attains sufficient hydraulic head to overcome friction. Thus, basal groundwater tends to slope toward the shoreline.

3.3.4 Site Hydrogeology

The site is underlain by the Moanalua Aquifer System, which is part of the Honolulu Aquifer Sector on the island of Oahu. The aquifer is classified by Mink and Lau, 1990, with the system identification number 30104116 (23321). This system includes an unconfined basal aquifer in sedimentary (nonvolcanic) lithology. The groundwater in this aquifer has a moderate salinity (1,000 to 5,000 mg/l Cl⁻) making it neither a drinking water source nor ecologically important. The groundwater is also described as replaceable with a high vulnerability to contamination.

The site is further underlain by a second aquifer of the same system. The aquifer is a confined, basal aquifer in flank compartments, and is classified with the system identification number 30104121 (11113). The groundwater in this aquifer is fresh with less than 250 mg/l Cl⁻ and is currently used as a drinking water source. It is also described as irreplaceable with a low vulnerability to contamination (Mink and Lau, 1990).

4.0 WATERSHED CHARACTERIZATION

The retrofit feasibility study was conducted using a drainage area approach, which involves assessing and prioritizing water quality issues according to specified drainage areas to develop and implement BMPs. The Honolulu International Airport is on the discharge end of two watersheds, Manuwai and Keehi, as defined by the Hawaii Statewide Geographic Information Systems (GIS) Program maintained by the Office of Planning (Attachment I, Figure 2). However, DOTA can only implement retrofits in areas within HNL due to land ownership concerns. Therefore, other areas in these two watersheds were not included in the retrofit analysis.

4.1 Manuwai Watershed

The Manuwai Watershed is located on the southern portion of the island of Oahu and contains 4210.231 acres of land. The Manuwai Canal is the surface water body in this watershed that drains the airport as well as Hickam Air Force Base. The canal flows south through HNL to Ahua Pond, which discharges to Mamala Bay.

This watershed contains the majority of HNL, including the terminals, a majority of the runways and taxiways, hardstands, as well as industrial and commercial tenants along Lagoon drive. The northern and western portions of the watershed, consisting of over 50 percent of the watershed, are used by the Federal Government for Hickam Air Force Base, military housing, and golf courses. DOTA has developed a relationship with the military in order to jointly comply with environmental requirements in this area.

Mamala Bay (oceanic) is listed on the 303(d) list for impaired water bodies and the constituents of concern include total nitrogen and chlorophyll a.

4.2 Keehi Watershed

The Keehi Watershed is located on southern portion of the island of Oahu and encompasses 1578.23 acres of land. There are no surface water bodies that drain the area with the exception of Kaloaloa Canal, which flows east along Aolele Street to Keehi Lagoon. The majority of storm water is directed to the City and County of Honolulu's MS4 or the Federal Government's MS4.

This watershed contains the eastern portion of HNL, including the baseyard, rental cars, and industrial tenants on Ualena Street. Additionally, the area north of HNL contains several mixed industrial businesses, military housing, residential areas, and a golf course. The western portion of the Keehi Lagoon Park is also included in this watershed.

Keehi Lagoon is listed on the 303(d) list for impaired water bodies and the constituents of concern include nutrients (total nitrogen, nitrates and nitrites, total phosphorus), chlorophyll a, enterococci, turbidity, and total suspended solids.

5.0 **RETROFIT GOALS**

Storm water retrofitting involves the redesign and installation of storm water BMPs in areas of existing development to meet a retrofit goal. The retrofit goals identified for the HNL Small MS4, in order of priority, include:

- 1. Reduce Pollutants of Concern
- 2. Trapping Trash and Floatables
- 3. Reduce Runoff Volumes
- 4. Storm Water Demonstration and Education

5.1 Reduce Pollutants of Concern

The HNL Small MS4 discharges to Keehi Lagoon and Mamala Bay in southern Oahu. Since, HNL activities are centralized within their property boundaries, DOTA shall only be concerned with the impairments related to these water bodies. In addition to the 303(d) list of impaired water bodies (2004), State of Hawaii, Department of Health (DOH) has also established the list of impaired water bodies on Oahu in the State of Hawaii Water Quality Monitoring and Assessment Report (2006).

WATER BODIES	POLLUTANTS FROM 303(d) LIST, 2004	POLLUTANTS FROM WATER QUALITY MONITORING AND ASSESSMENT REPORT, 2006
Keehi Lagoon (Point X)	 Enterococci Total Nitrogen Chlorophyll a Total Phosphorus 	 Enterococci Total Nitrogen Chlorophyll a Total Phosphorus
Keehi Lagoon waters and nearshore waters to 30' from lagoon mouth to Pearl Harbor	 Nutrients Turbidity Suspended Solids 	 Nutrients Turbidity Suspended Solids Total Nitrogen Nitrates + Nitrites Total Phosphorus
Mamala Bay (oceanic)	Total NitrogenChlorophyll a	Total NitrogenChlorophyll a

 TABLE 3: IMPAIRED RECEIVING WATERS

HNL shall target the following list of pollutants identified from Table 3 for retrofit projects under the scope of this study.

- 1. Suspended Solids / Turbidity
- 2. Total Nitrogen
- 3. Nitrates + Nitrites
- 4. Total Phosphorus
- 5. Chlorophyll a
- 6. Enterococci
- 7. Oil and Grease

8

At the time of this report, there are no established Total Maximum Daily Loads (TMDLs) or Waste Load Allocations (WLA) for Keehi Lagoon and Mamala Bay. Therefore, there are no quantitative target levels for the pollutants of concern. However, DOTA shall strive to reduce pollution and to improve water quality by implementing water quality BMPs. Total Phosphorus will be used as an indicator pollutant for the others listed above and retrofits will strive to reduce the indicator pollutant by 25%. This retrofit study will evaluate TP removal efficiencies based on data obtained from existing literature and manufacturer's specifications. Implemented BMPs may not reach the 25% removal goal.

5.2 Trapping Trash and Floatables

This retrofit goal was selected based on reports from the maintenance crew and contractors at HNL, which indicated that significant volumes of trash were being removed from the storm drains and along the coastline (Attachment III). Therefore, DOTA will seek to install BMPs that will prevent the trash and debris from impacting the receiving waters.

5.3 Reduce Runoff Volumes

Due to the nature of activities at HNL, large amounts of impervious cover have been constructed in the area. The impervious cover leads to increases in peak discharge, velocity, and volume of storm water runoff as well as increased pollutant loads. Reducing runoff volume also reduces pollutants by allowing storm water to infiltrate the ground prior rather than discharge to the receiving water through the MS4.

5.4 Storm Water Demonstration and Education

In order to promote education and stewardship, demonstration retrofits may be installed in a public area to treat localized runoff and introduce new storm water technologies.

5.5 Performance Goal Summary

Table 4 contains the goals that will be used to evaluate potential retrofits at HNL.

DESCRIPTION	PRIMARY PERFORMANCE GOALS		
Pollutant Removal	Retrofits/BMPs shall achieve at least 25% reduction from existing, on-		
	site total phosphorus loads for areas treated by retrofit/BMPs. Provide		
	retrofit/BMP designs that also address removal of sediment as well as		
	oil and grease loads as priority pollutants.		
Trap Trash and Floatables	Retrofits/BMPs shall achieve at least 25% reduction in existing, on-		
	site trash and other floatables.		
Reduce Runoff Volumes	Retrofits shall promote infiltration and overall reduction in runoff		
	volume to the extent achievable.		
Education and Outreach	Provide outdoor learning and community outreach opportunities on		
	DOTA land.		
DESCRIPTION	SECONDARY BENEFITS		
Quick Implementation Projects	Indentify quick implementation projects (constructed within 1 year)		
	based on existing CIP projects, availability of funds, projects		
	underway, etc.		
Specific Problems	Identify retrofits for problem areas such as Ualena Street tenants,		
	Baseyard sweeper rubbish, and the triturators.		

 TABLE 4: RETROFIT PERFORMANCE GOALS

6.0 DESKTOP ANALYSIS

The storm water retrofit assessment was divided into two focus areas, storage retrofits and onsite retrofits. Storage retrofits were evaluated by examining the drainage canals and major outfalls at HNL. On-site retrofits were evaluated by examining areas of significant industrial activity such as the baseyard facility and aircraft hardstands at HNL. Due to leasing conflicts, tenant areas were not evaluated as a part of this retrofit study, except in areas of historical issues.

The desktop analysis was conducted using a basin-by-basin approach to locating potential retrofits. Data used in the desktop analysis included the following:

- Drainage Map The autocad map developed for HNL included all storm drainage structures such as inlets, pipes, channels, outfalls, etc. obtained from as-built drawings and a field survey.
- GIS Program The GIS program included layers from the Hawaii Statewide GIS Program from watersheds, hydrology, topography, zoning and land use, aerial photography, and road network.
- Aerial Maps Google Earth© was utilized to provide both an aerial and street view of potential retrofit sites at HNL.
- Maintenance Data The DOTA maintenance crew and contractor maintenance crew provided DOTA with information about how much trash and debris was removed from storm drainage structures.
- Monitoring Data DOTA had previously conducted storm water monitoring at set locations within HNL.

6.1 Storage Retrofits

Storage retrofits are considered in those locations where large storage volumes are found and include the following:

- SR-1 Modify Existing Ponds
- SR-2 Storage above Roadway Culverts
- SR-3 New Storage below Outfalls
- SR-4 Treatment in the Conveyance System
- SR-5 Storage in Transport Right of Ways
- SR-6 Large Parking Lot Retrofits

6.1.1 SR-1 Modify Existing Ponds

There are three existing ponds within HNL designed to allow water to evaporate. This is an important design structure to prevent standing water and limit bird populations. Inspection of the evaporation ponds indicates that the current design is adequate and therefore will not be altered with a retrofit.

6.1.2 SR-2 Storage above Roadway Culverts

Road crossings have the potential to be modified for temporary water quality storage. The available storage can also be increased by excavating areas adjacent to the upstream channel. Desktop analysis revealed one potential site for roadway culvert storage:

• Culvert near storm drain manhole 5466 in Basin D10.

The remaining roadway culverts did not appear to have sufficient area to expand the canal storage.

6.1.3 SR-3 New Storage below Outfalls

This retrofit creates new treatment adjacent to the stream corridor near the terminus of an existing storm drain outfall. Outfall retrofits are designed off-line by splitting flow from the existing storm drain pipe (or ditch) and diverting it to a storm water treatment area formed by an existing depression, excavation, or constructed berm. Desktop analysis revealed that the majority of outfalls at HNL are tidally influenced and that there is limited space surrounding outfall locations. However, several outfalls were identified as having the potential for additional storage:

- Outfall 4641, located south of Kalewa Street in Basin A1.
- Outfall 4771, located south of Runway 26R in Bain A2.
- Outfall 4658, located near ARFF Station 2 on Lagoon Drive in Basin A9.
- Outfalls 4761, 4764, 4765, and 4766 on the Reef Runway in Basin A10.
- Outfalls 4818, 4221, 4815, 4811, 4810, 4808, 4807, and 4805 on the Reef Runway in Basin B3.

6.1.4 SR-4 Treatment in the Conveyance System

Treatment in the conveyance system can be obtained through in-channel designs where the treatment storage is obtained within the channel or off-channel designs where the treatment storage is provide in cells adjacent to the channel. Desktop analysis revealed one potential location for off-channel designs:

 Diverted storm water from Manuwai Canal to the swale located between Taxiway A and Runway 8L in basin B17 may be evaluated for further retrofit opportunities.

Due to area restrictions the remaining channels were identified for potential in-channel designs:

- Rock channel from storm drain 4105 near ARFF 2 on Lagoon Drive in Basin A10.
- Unnamed canal near the T-Hangars in Basin B4.
- Unnamed canal south of Runway 4L in Basin B6.
- Unnamed canal on Elliot Street in Basin B12.
- Unnamed canal by Access A in Basin D10.
- Kaloaloa Canal in Basins D11, D12, D13, and E. This canal may require dechannelization prior to retrofit.
- Unnamed canal north of the Kaloaloa Canal and south of Ualena Street in Basin E.

6.1.5 SR-5 Storage in Transport Right of Ways

This retrofit option is not feasible at HNL due to lack of additional space around roadways.

6.1.6 SR-6 Large Parking Lot Retrofits

Large parking lots are those that are five acres or greater in size and are designed for vehicles. There are several parking lots at HNL to accommodate travelers and employees; however, none are greater than five acres with enough room for a storage retrofit.

6.2 **On-Site Retrofits**

On-site retrofits are considered in those locations where there are excessive impervious areas or potential pollutant activities and include the following:

- OS-7 Hotspot Operations
- OS-8 Small Parking Lot Retrofits
- OS-9 Individual Streets
- OS-10 Individual Rooftops
- OS-11 Little Retrofits
- OS-12 Landscapes- Hardscapes
- OS-13 Underground Retrofits

6.2.1 OS-7 Hotspot Operations

Hot spots are defined as areas were operations generate higher concentrations of storm water pollutants and/or have a higher risk of spills, leaks, or illicit discharges. All industrial and commercial tenants at HNL have been provided with site-specific BMPs to follow during operations to limit storm water impacts; however, for certain operations physical retrofits may provide additional storm water protection. Desktop analysis for hotspots has been supplemented with local knowledge of airport tenants and includes the following:

- HNL Baseyard, including sweeper washing
- HNL Triturators, Gate 6 and Gate 34
- Rental Car Check-In Stations
- Ualena Street Tenants, including So Ono Food Products, Royal Hawaiian Movers, and Autobody Shops

Sites and technologies selected for hot spots are discussed in Section 7.2.

6.2.2 OS-8 Small Parking Lot Retrofits

Small parking lots are considered those less than five acres. Parking areas at HNL are listed in Table 5. A wide range of storm water treatment options can be adapted for this retrofit, including impervious cover reduction, permeable pavers, bioretention islands, perimeter bioretention, perimeter sand filter, filter strips, infiltration, and dry swales.

AREA DESCRIPTION	BASIN	APPROXIMATE SIZE (ACRES)	NOTES
Employee Parking off Elliott Street	B15	4.46	This parking lot is slated to be moved as part of the modernization plan. DOTA may be able to include retrofits in new lot site during construction phase.
Commuter Terminal Parking (Lot B)	D1	6	This parking lot is slated to be removed as part of the modernization plan.
Interisland Terminal Parking (Lot M)	D1, D2	2.66	This parking structure is 7 stories high with 1,787 parking spaces.
International Parking (Lot A)	D2, D3	2.35	This parking structure has 1,800 spaces and several levels.
Overseas Terminal Parking (Lot D)	D4, D6	3.33	This multi-level parking structure has 1,570 spaces.
Economy (Lot J)	D4	2.38	
Employee Parking (Lot C)	D6	1.5	
Car Rental Parking Area	D7, D8, D9	4.46	This area will be rebuilt as part of the modernization plan and on-site BMPs may be included in the design phase.
Parking Lot G	D10	2.64	
Parking Lot Q	D10	6.9	No space available for storage retrofits.
Parking Lot R	D10	4.23	
Cell Phone Waiting Lot on Aolele Street	D10	0.29	
Maintenance Baseyard Interior Parking	D11	0.97	
Maintenance Baseyard Exterior Parking	D11	0.54	
Palekona Drive Parking Lot	A9	1.06	
Parking at the end of Lagoon Drive	A9	0.7	

TABLE 5: HNL PARKING LOTS

6.2.3 OS-9 Individual Streets

These retrofits apply to roadbeds or rights-of-way for individual streets. A wide array of retrofits may be included in this category such as bioretention cells, swales, catch basin inserts, and perforated storm drain pipes. All streets within HNL were considered for retrofit potential during the field evaluation.

6.2.4 OS-10 Individual Rooftops

This retrofit is designed to capture, store, treat, and then gradually release runoff from individual rooftops. The goal is to systematically retrofit as many rooftops as possible. Rooftops with significant area (>25,000 square feet) were evaluated for retrofits due to the larger impact they may have on receiving waters and included the following:

- Building 223 in Basin A3.
- Building 206 in Basin A4.
- T-Hangar Building 420 in Basin A9.
- T-Hangar Building 421 in Basin A9.
- T-Hangar Building 422 in Basin A9.
- Ewa Concourse in Basin B10.
- New Hawaiian Airlines Building in Basin B11.
- Interisland Terminal in Basin B13.
- Central Concourse in Basin B9.
- New Mauka Concourse in Basin D1.
- Diamondhead Concourse in Basin D10.
- International Parking Structure in Basin D2.
- Overseas Parking Structure in Basin D4 and D6.
- Airport Terminal in Basin D5.

6.2.5 OS-11 Little Retrofits

Little retrofits consist of on-site practices that treat runoff from directly connected impervious areas less than one acre in size, such as sidewalks and vacant lots. Treatment options can include swales, infiltration, filter strips, impervious cover conversion, impervious cover disconnection, and soil compost amendment. The impervious area created by sidewalks and roadways are addressed with the storm drain retrofits, which are discussed further in Section 7.1. Additionally, the vacant lot on Kalewa Street was considered for a little retrofit.

6.2.6 OS-12 Landscapes – Hardscapes

These retrofits involve treating storm water from highly urban settings with landscaping areas such as plazas, waterfronts, urban streetscapes, and pocket parks. These urban landscapes represent a minor amount of storm water treatment; however, they are highly visible and may allow further opportunities for public education. Desktop analysis is not feasible for these retrofits; therefore potential areas for landscaping will be noted during field investigations of larger sites.

6.2.7 OS-13 Underground Retrofits

Underground retrofits will be considered as a last resort due to their high cost. They will be restricted to areas that are too small for other retrofits and discharge high pollutant loadings to sensitive waters. Common treatment methods include underground sand filters, multi-chamber treatment trains, and proprietary storm water treatment devices such as the Continuous Deflective Separation (CDS) device. Oil Water Separators (OWS) and CDS devices have already been installed at hot spots in HNL (i.e. gate and hardstand areas); therefore, these devices will not be included unless investigation reveals that other retrofits are not feasible.

7.0 RETROFIT RECONNAISSANCE INVESTIGATION (RRI)

The completed desktop analysis yielded a list of 84 potential locations for retrofits. Each location was given a unique identification number based on the basin where it is located. Field crews visited sites from the desktop analysis list and evaluated them with detailed field inspection forms obtained from the USRM by the Center for Watershed Protection as well as the field guide (Attachment IV). The list of desktop analysis retrofit locations is included in Attachment V.

Retrofits identified in the desktop analysis were evaluated in the field and then ranked based on the goals established during Task 1 of this study. 60 of the original 84 potential locations were evaluated as not feasible. The final list of potential retrofits is included in Section 7.5 and the completed RRI forms are located in Attachment VI. This list does not include storm drain or hotspot retrofits since these are automatically ranked as a high priority for implementation. All retrofits will be considered as the funds become available.

7.1 Storm Drain Retrofits

DOTA has proactively been considering retrofits for the storm drains at HNL prior to this report. An example storm drain retrofit was installed on storm drain 7572 located in Basin D2. Photographic documentation of this installation is included in Attachment III. This retrofit is designed to remove excess trash and debris before it enters the Small MS4. Additionally, the retrofit decreases the effort required during storm drain maintenance. Based on this installation, it is projected that further storm drain retrofits would cost approximately \$3,000 per drain. The remaining storm drains at HNL were evaluated and ranked based on storm drain maintenance data (Attachment III). Retrofits installed in these storm drains are not limited to the example provided and may include other proprietary BMPs as they become available.

7.2 Hot Spot Retrofits

Through inspections conducted over several years at HNL, particular hot spots have been identified as having the potential to contribute pollutants to HNL's Small MS4. These have not been included in the ranking system since they are already considered a top priority. The descriptions of these top priority projects are located on RRI forms in Attachment VII.

7.2.1 Triturators

The triturator is utilized by tenants at HNL to dump lavatory waste collected from aircraft. There are two sites, located at Gate 6 and Gate 34, equipped with triturators. They work by allowing the lavatory truck to drive over an opening in the ground. The waste is discharged from the truck into the ground and directed to the sanitary sewer. The issues identified at both sites involve the fact that the trituators are at a higher elevation than the surrounding area and any wastes spilled or water leaking off of the truck may flow to the storm drain system. This discharge has been temporarily corrected using booms to protect the storm drains; however, a more permanent solution is suggested through this retrofit study. The solution involves the placement of walls at least one foot high around the perimeter of the triturator units. In the covered driveway areas, trench drains would be installed that flow back into the sanitary sewer, which would serve as containment for any spilled wastes. The designer will need to ensure that the trench drains are designed to prevent excess storm water infiltration into the sanitary sewer.

7.2.2 Maintenance Baseyard Sweeper Rubbish

The sweeper trucks utilized by baseyard personnel to keep roadways, runways, and taxiways clean require a location to wash the trucks following their sweeper runs. The trucks contain large and fine debris as well as water. This retrofit study proposes constructing a permanent clean-out location for the sweeper trucks. The engineer may alter the final design; however, the concept design is to construct a contained concrete pad with a sump. The sweepers would dump their waste on the concrete pad and allow for evaporation of the sweeper water. Once the material had dried, the debris could be removed and deposited in the trash bin for disposal.

7.2.3 Ualena Street Tenants

Ualena Street tenants conduct a variety of different activities that could impact the environment. Additionally, those pollutants are easily conveyed to Keehi Lagoon through the canal located south of the facilities along Aolele Street. RRI designs developed for each location are included in Attachment VII.

7.3 Ranking Criteria

The remaining sites from the desktop analysis list were ranked based on the field analysis and the performance goals identified in Section 3. The ranking system used for these sites is based on the March 2008 *Charlottesville Stormwater Stewardship on Public Lands* (Charlottesville Report) by Charlottesville, Virginia and the Center for Watershed Protection.

PRIMARY SCREENING	DESCRIPTION	SCORING
FACTOR		
Pounds of Total Phosphorus	Screening factor that combines	Top Quartile = 10
(TP) Removed – TP used as	influence of total impervious area	Second Quartile = 7
indicator for other pollutants	treated and removal efficiency of	Third Quartile $= 5$
	proposed retrofit.	Fourth Quartile $= 2$
Cost Effectiveness (per	Cost per pound of TP treated.	Top Quartile (highest cost) = 2
pound of TP treated)		Second Quartile $= 5$
		Third Quartile $= 7$
		Fourth Quartile (lowest $cost$) = 10
Runoff Reduction	Ability of practice to reduce	Practice includes soil absorption
	overall volume of runoff through	(bioretention), infiltration, or
	infiltration, absorption, runoff	collection = 10
	capture & reuse, etc.	Practice includes filtering, runoff
		dispersion, or other practice that
		provides some runoff reduction = 5
		Practices does not include these
		features = 0
Public Education	Whether practice is strategically	Exceptional opportunity = 10
	located on property and has	Moderate opportunity $= 5$
	design features that would be of	Marginal opportunity $= 0$
	interest to the community	
SECONDARY SCREENING	DESCRIPTION	SCORING
FACTOR		
Quick Implementation	Whether property has current	Good chance for quick
	funding or planning process	implementation = 1

 TABLE 6: SCORING CRITERIA USED FOR RANKING

	underway where retrofit could fit	Not at this time $= 0$
	into larger project	
Specific Problem	Whether the practice is designed	Practice addresses a specific
	to address a specific storm water	problem = 1
	problem identified at HNL.	Practice does not address a specific
		problem = 0
Low Maintenance Burden	Practice does not require frequent	Routine maintenance involves
	cleaning, dredging, excavation,	mainly vegetation or pumping of
	etc. Most maintenance activities	storm drain features $= 1$
	involve vegetation (pruning,	Maintenance involves periodic
	weeding, etc.)	dredging or excavation $= 0$
No Permitting Issues	Permits for activities in canals,	Permits not likely = 1
	shoreline, and areas over 1 acre	Permits likely $= 0$
	not likely.	
Few Site & Utility	RRI does not identify utility,	No constraints identified $= 1$
Constraints	usage, or FAA constraints at	Constraints identified $= 0$
	location of practice.	

The scores for each site were weighted as follows to allow for a maximum score of 100:

- Total Pounds of TP Removed (x3)
- Cost Effectiveness (x3)
- Runoff Reduction (x1.5)
- Public Education (x2)
- All Secondary Screening Factors (x1)

The weighted scores for each site were tallied and then compared to determine the highest ranking retrofit sites.

7.4 Deriving Data for Pollutant Load Reductions & Cost

The data for pollutant load reductions and costs pertinent to each BMP were determined using Appendices B, D, and E of the USRM as well as the EPA website. Specific data relevant to HNL was obtained from the Western Regional Climate Center and storm water monitoring events conducted from 2008 through 2010. The following equations were utilized to estimate pollutant loads:

$$L = \frac{P \times Pj \times Rv}{12} \times C \times A \times 2.72$$

$$Rv = 0.05 + 0.009 \times I$$

PARAMETER	PARAMETER DESCRIPTION	HNL VARIABLES
Р	Precipitation (in/yr)	20.87
Pj	Fraction of Runoff Producing Events	0.126
Rv	Runoff Coefficient	Site Dependent
Ι	Site Imperviousness	Site Dependent
	Mean Concentration of TP (mg/L)	0.445
C*	Mean Concentration of TN (mg/L)	3.385
C.	Mean Concentration of TSS (mg/L)	23.065
	Mean Concentration of Oil & Grease (mg/L)	3.494
А	Area (acres)	Site Dependent

*Based on storm water monitoring data from 2008, 2009, and 2010.

The pollutant removal efficiencies and unit costs of the retrofit BMPs are provided in Tables 8 and 9, respectively. This data was used to develop a spreadsheet for each site that assisted in ranking each of the retrofits based on pollutant removal and cost effectiveness.

PRACTICE	QUALIFIER	UNIT COST*	SOURCE
		(2006 \$/CF	
		TREATED)	
Bioretention/ Rain Garden	<0.5 ac treated	\$30.00	USRM Table E.4 & Section D.1
Bioretention/ Rain Garden	>0.5 ac treated	\$10.50	USRM Table E.4 & Section D.3
Water Quality Swale	Engineered swale	\$10.50	Similar to a bioretention cost.
Detention Basin		\$5.00	USRM Table E.4
Catch Basin Insert		\$4.00	From EPA Fact Sheet about
			Catch Basin Inserts.
Downspout Disconnection	1 or several 55-	\$25.00	From Charlottesville Report
to Rain Barrel	gallon barrels		
Rainwater Harvesting	Cistern or larger	\$15.00	From Charlottesville Report
	storage device		
Impervious Cover Removal		\$20.00	From Charlottesville Report
Sand and Organic Filter		\$20.00	From Charlottesville Report
Pervious Pavement		\$20.00	From Charlottesville Report
Storm Water Planter		\$27.00	From Charlottesville Report
Green Roof	1" of rainfall,	\$1.67	From EPA Fact Sheet about
	\$20.00 per square		Green Roofs.
	foot of roof		

TABLE 8: UNIT COSTS OF RETROFIT BMPS

PRACTICE	QUALIFIER	TP	TN	TSS	O&G	NOTES
Bioretention/		75	60	60	90	EPA Fact Sheet on Bioretention.
Rain Garden						Mean values provided for TP and
						TN. TSS and O&G obtained from
						USRM Appendix D.
Filter Strip	150-ft Length	40	20	84	90	EPA Fact Sheet on Vegetated Filter
						Strip. O&G removal rate based on
						bioretention.
Filter Strip	75-ft Length	25	27	54	90	EPA Fact Sheet on Vegetated Filter
						Strip. O&G removal rate based on
						bioretention.
Water Quality	Engineered	25	55	80	80	USRM Appendix D, Table D.7,
Swale	swale					Median range
Detention		20	25	50	70	USRM Appendix D, Table D.1,
Basin						Median range
Catch Basin		15	10	15	5	Best professional judgment.
Insert						However, will vary depending upon
						proprietary device used.
Downspout	1 or several 55-	75	60	60	90	Assuming rainwater is used for
Disconnection	gallon barrels					landscaping water, rates will be
to Rain Barrel						similar to rain garden.
Impervious		90	90	90	90	Best professional judgment
Cover Removal						
Sand and		60	30	85	85	USRM Appendix D, Table D.5,
Organic Filters						Median Range
Pervious		65	40	90	90	USRM Appendix D, Table D.6,
Pavement						Median Range
Storm Water		37.5	30	30	45	Assumed to have approximately half
Planter						the efficiency of rain gardens.
Green Roof		75	60	60	90	Assumed to be similar to rain garden.

 TABLE 9: POLLUTANT REMOVAL EFFICIENCY OF RETROFIT BMPS

Notes: TP = Total Phosphorous

TN = Total NitrogenTSS = Total Suspended Solids

O&G = Oil and Grease

7.5 **Project Recommendations**

Table 10 provides the listing of project recommendations for storm water retrofits at HNL based on ranking. The locations of these projects within HNL are depicted on Figure 3 in Attachment I.

		eet ID	l Pounds of Removed	Cost Hivenaa	noff Itetion	blic ation	Quick	ific len	Low Henance Urdos	ermitting ssues	v Site traint.	
Rank	Description	Loi						Lop C	Bug	- 10g	E.	/ Total
1	Bioretention on Lagoon Drive	Δ2_2	30	21	15	20						87
2	Paiea Street Bioretention	E-7	30	15	15	20	0	0	1	1	1	83
3	Ewa Concourse Green Roof	B10-3	21	30	15	10	0	0	1	1	1	79
4	Overseas Terminal Green Roof	D5-1	21	30	15	10	0	0	1	1	0	78
5	Interisland Terminal Green Roof	B13-2	15	30	15	10	0	0	1	1	1	73
	New Elliot Street Parking Lot											
6	Bioretention	B15-1	30	15	15	10	1	0	1	0	1	73
7	Central Concourse Green Roof	B9-1	15	30	15	10	0	0	1	1	0	72
8	New Mauka Concourse Green Roof	D1-1	15	30	15	10	0	0	1	1	0	72
	Rain Garden in Vacant Lot on Kalewa											
9	Street	D16-2	21	21	15	10	0	0	1	0	1	69
10	Dry Detention Basin on Kalewa Street	A1-1	21	21	15	10	0	0	0	0	0	67
	Bioretention at Outfall 4105 near ARFF											
11	2	A10-1	15	15	15	20	0	0	0	0	1	66
	Dry Detention Basin South of Runway											
12	26R	A2-1	30	21	15	0	0	0	0	0	0	66
13	New Hawaiian Air Hangar Green Roof	B11-1	6	30	15	10	1	0	1	1	1	65
14	Parking Lot R Bioretention	D10-6	21	15	15	10	0	0	1	1	1	64
	Cell Phone Waiting Lot Permeable											
15	Pavers	D10-7	6	21	15	20	0	0	0	1	1	64
16	Nakolo Place Parking Lot Bioretention	A4-1	6	15	15	20	0	0	1	1	1	59
	Lagoon Drive Parking Lot Bioretnetion											
17	and Permeable Pavers	A9-3	15	6	15	20	0	0	1	1	1	59
10	Detention Basin from Unnamed Canal at	D (1	01	- 21	1.5	0	0	1		0	0	50
18	the End of Runway 4L	B6-1	21	21	15	0	0	1	1	0	0	59
19	Parking Lot G Bioretention	D10-4	15	15	15	10	0	0				58
20	Access "A" Canal Stabilization	DIU-I	<u> </u>	6	1.5	0				0	0	45.5
21	National Canal Stabilization	D14-1	<u> </u>	6	1.5	10			1	1	1	45.5
22	Planter for Didg 225 K001 K0001	A3-1	0	0	15	10	0	0		1		40
23	VID Trang Oil Watan Sanaratan	A4-2	0	0	15	10		1		1		40
4	vir mans On water separator	D10-3	0	<i>L</i> 1	0	10			0	0	U U	30

TABLE 10: FINAL LIST OF POTENTIAL RETROFIT BMPS AT HNL

8.0 SUMMARY

A total of 24 water quality retrofit projects have been identified and ranked as part of this feasibility study for the Honolulu International Airport. Furthermore, 65 storm drains and 8 hotspots were identified for retrofit BMPs. Secondary projects were also identified during the field reconnaissance and include repairing outfall 4747 in Basin B4, cleaning outfall 10276, and repairing channel erosion to the bridge and culvert near storm drain 5464.

The purpose of this retrofit feasibility study was to identify and prioritize storm water retrofit opportunities within HNL that could assist DOTA in meeting NPDES requirements. The projects were evaluated based on the retrofit goals of reducing pollutants of concern, trapping trash and floatables, reducing runoff volumes, and providing opportunities for storm water demonstration and education. The identified retrofit opportunities have been listed based on concept design and will require further engineering study to determine their implementation potential. Additionally, concepts may need to be altered as the Airport Modernization Plan plans become finalized. Retrofit sites will be further evaluated and implemented as funds become available to the DOTA.

9.0 **REFERENCES**

- Center for Watershed Protection. August 2007. Urban Storm Water Retrofit Practices Version 1.0.
- The City of Charlottesville and the Center for Watershed Protection. March 2008. *Charlottesville Stormwater Stewardship on Public Lands.*
- The City & County of Honolulu, Department of Environmental Services. May 1999. *Best Management Practices Manual for Construction Sites in Honolulu.*
- Macdonald, G.A., A.T. Abbot, and F.L. Peterson. 1983. *Volcanoes in the Sea*. University of Hawaii Press.
- Mink, John F. and Stephen L. Lau. February 1990. Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii.
- State of Hawaii Department of Health. June 16, 2004. 2004 List of Impaired Waters in Hawaii Prepared Under Clean Water Act 303(d).
- State of Hawaii Department of Health. January 11, 2008. 2006 State of Hawaii Water Quality Monitoring and Assessment Report.
- State of Hawaii, Department of Health. August 2004. *Hawaii Administrative Rules, Chapters 11- 54.*
- State of Hawaii, Department of Health. September 2002. *Hawaii Administrative Rules, Chapters 11- 55 Appendix B.*
- State of Hawaii, Department of Transportation, Airports Division. July 2010. *Enviance System Storm Water Management Program Data*.
- State of Hawaii, Department of Transportation, Airports Division. July 2010. *Hawaii* Airports Modernization Plan, <u>http://www.hawaiiairportsmodernization.com/3/honolulu-international-airport</u>.
- State of Hawaii, Department of Transportation, Airports Division. May 2007. Honolulu International Airport, Small Municipal Separate Storm Sewer System, Storm Water Management Program.
- State of Hawaii, Department of Transportation, Airports Division. January 19 2007. *National Pollutant Discharge Elimination System, Permit Number HI S000005,* expires June 1, 2011.
- State of Hawaii, Department of Transportation, Airports Division. April 2009. *Storm Drain Outfall Inspection & Field Screening Plan.*
- State of Hawaii, Department of Transportation, Highways Division. March 2007. *Oahu Storm Water Management Program Plan, Oahu District.*
- United States Environmental Protection Agency. January 9, 2008. *National Pollutant Discharge Elimination System website*, <u>http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm?action=browse</u>.

22

- United States Environmental Protection Agency. April 9, 2008. *Webcast: The Art and Science of Stormwater Retrofitting.*
- U.S. Department of Agriculture Soil Conservation Service. 1972. Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.
- U.S. Department of Interior Geological Survey. 1992. Hau'ula Quadrangle, 7.5 Minute Series (Topographic Map).

ATTACHMENT I

Figures

ATTACHMENT II

Airport Modernization Plan Rendering

- 1. New Hawaiian Airlines Air Cargo
- New Hawaiian Airlines Maintenance Facility
 New Inter-Island Maintenance Hardstands
- 4. Widened and Straightened Taxilane G&L 5. International Parking Structure
- 6. New Consolidated Rental Car Facility

A. New Mauka Concourse B. Existing Inter Island Terminal (IIT) (Terminal 2) C. Commuter Operations Area D. New Ewa Concourse E. New Frontal Gates with APM system F. Renovated Central Concourse G. Existing Over Sea Terminal (OST) H. New Diamond Head Concourse J. New Waikiki Concourse

ATTACHMENT III

Storm Drain Ranking and Example Retrofit

Storm Node Ranking

Ranking	EID	Basin	Amount of Waste Removed
5	4632	A2	250 LBS. DIRT, GREEN WASTE
5	4703	A6	300 LBS. DIRT
5	5748	A6	150 LBS OF DIRT AND TRASH REMOVED.
5	4140	B10	100 LBS. DIRT, TRASH
5	5522	B9	150 LBS. OF DIRT AND TRASH REMOVED.
5	4319	D10	500 LBS. DIRT
5	4336	D10	150 LBS. DIRT
5	4366	D10	150 LBS.
5	7513	D10	150 LBS. DIRT
5	10227	D10	350 LBS. DIRT, TRASH
5	4580	D12	150 LBS DEBRIS
5	4598	D15	200 LBS DIRT, TRASH, CEMENT, BATTERY
5	5147	D17	200 LBS DEBRIS
5	5096	D2	400 LBS DEBRIS
5	5121	D4	100 LBS. DIRT
5	5123	D4	300 LBS. DIRT
5	5132	D4	450 LBS. DIRT
5	7466	D4	150 LBS DEBRIS
5	7520	D4	500 LBS. DIRT, TRASH
5	7525	D4	150 LBS. DIRT
5	7465	D6	150 LBS DEBRIS
5	7534	D6	300 LBS DEBRIS
5	10197	D6	150 LBS. DIRT, TRASH
5	10217	D6	150 LBS DEBRIS
5	10255	D6	150 LBS DEBRIS
5	7553	D8	100 LBS DEBRIS
4	4150	B10	75 LBS. DIRT, TRASH
4	4182	B10	75 LBS. DIRT
4	7409	B13	75 LBS. OF DIRT REMOVED.
4	5983	B9	75 LBS. DIRT
4	4601	D16	75 LBS. DIRT, TRASH
4	5114	D3	75 LBS DEBRIS
4	5186	D7	80 LBS DEBRIS
4	5212	E	75 LBS DEBRIS
3	4700	A6	50 LBS. DIRT
3	4702	A6	50 LBS. DIRT
3	7620	B10	50 LBS. DIRT
3	10161	B10	50 LBS OF DIRT AND TRASH REMOVED.
3	5253	BII	50 LBS. OF DIRT REMOVED.
3	4145	B9	50 LBS. DIRT
3	5357	B9	50 LBS. DIRT
3	5976	B9	50 LBS. DIRT
3	4318	D10	40 LBS. DIKT
3	4341	D10	30 LBS. DIRT
3	5168	D17	SULBS. DIRT
2	5626	A2	25 LBS. DIRT, TRASH
2	4623	A3	JULBS. DIKI, IKASH
2	5818	A3	25 LBS. DIRT, TRASH
2	4694	A6	25 LBS. DIK1, 1KASH
2	4697	AÓ	
2	4/05	AO	
2	5/52	AO	25 LBS DEBKIS
2	7692	A6	23 LBS. DIKI

Storm Node Ranking

2	4755	A9	30 LBS. TRASH
2	5678	A9	25 LBS. DIRT
2	5703	A9	25 LBS. DIRT, TRASH
2	4141	B10	25 LBS. DIRT, TRASH
2	4142	B10	25 LBS. DIRT, TRASH
2	4149	B10	25 LBS. DIRT, TRASH
2	7614	B10	25 LBS. DIRT, TRASH
2	5077	B12	25 LBS. OF DIRT REMOVED.
2	5665	B4	25 LBS. DIRT
2	5554	B9	25 LBS. DIRT
2	5389	D10	25 LBS. DIRT, TRASH
2	7490	D2	25 LBS. DIRT

Rankir	ng Criteria
	Pounds Removed
1*	≤20
2	>20 - ≤30
3	>30 - ≤50
4	>50 - ≤100
5	≥100

*Not included in this report

POI Permanent BMP Installation Report – Project No. BO1909-23

Installed by : Hawaii Industrial Services, Ltd. 808.836.8653

POI Id:	7572
POI Equipment Type :	Drainage Catch Basin (58)
Inspection Schedule:	Semi Annual
Indentification Photo:	7372
Numerical Labeled N	leeded?
Placard (Stenciled)?	
Map Location (Basin):	D2
GPS Coordinates:	
POI Latitude:	[21 deg 20' 6" N]
POI Longitud	e: [157 deg 55' 18.8" W]

ATTACHMENT IV

Blank Retrofit Reconnaissance Inventory (RRI) Form and Field Guide

DATE:	INVESTIGATOR:		
WATERSHED:	BASIN:	SITE ID:	
SITE DESCRIPTION			
Name:			
Address:			
Land Use:	DOTA DOTA	Tenant	Unknown
Proposed Retrofit Location:			
Storage		On-Site	
Above Roadway Culvert	Below Outfall	Hotspot Operation	Small Parking Lot
In Conveyance System	Large Parking Lot	Individual Streets	Individual Rooftops
Other:		Small Impervious Area	Landscapes / Hardscape
		Underground	Other:
DRAINAGE AREA TO PROPOSE	D RETROFIT		
Drainage Area ≈		Drainage Area Land Use:	
Imperviousness ≈	%	☐ Industrial	Federal / Military
Impervious Area ≈		Commercial	Park
Notes:		Airport Common Use	Undeveloped
		U Vacant	Other:
EXISTING STORM WATER MA	NAGEMENT		
Existing Storm Water Practice:	Yes	No	Possible
If Yes, Describe:			
Describe Existing Site Condition	s. Including Existing Sit	e Drainage and Conveyance:	
	.,		
Existing Head Available and Poi	nts Where Measured:		

PROPOSED RETROFIT				
Purpose of Retrofit:				
Water Quality	Recharge	Channel Protection	Flood Co	ntrol
Demonstration / Educat	ion 🗌 Repair	Other:		
Retrofit Volume Comp	utations – Target Storage:	Retrofit Volume Computations	– Available S	torage:
-		-		
Proposed Treatment O	ptions:			
Extended Detention	Dry Pond	Created Wetland	Bioretenti	on
☐ Filtering Practice		Swale	Other:	
Describe Elements of P	roposed Retrofit, Including St	urface Area, Maximum Depth of 7	Freatment, ar	nd
Conveyance:		ý k	,	
SITE CONSTRAINTS				
Adjacent Land Use:		Access:		
Industrial	Federal / Military	□ No Constraints		
Commercial	Park	Constrained due to:		
Airport Common Use	Undeveloped	□ Slope	Space	
Residential	Other:	Utilities	Tree Impa	acts
Possible Conflicts Due	to Adjacent Land Use?	Structures	Tenant A	ctivities
🗌 Yes 🗌 No		Airport Operations	Other:	
If Yes, Describe:				
Conflicts with Existing	Utilities:	Potential Permitting Factors:	Probable	Not
None None				Probable
		T	_	_
Yes Possibl	e	Impacts to Wetlands		
	Sewer	Impacts to Stream / Canal		
	Water	Impacts to Shoreline		
	Jet Fuel Lines	Dewatering		
	Electric	Area over 1 acre		
	Other:	Other factors:		
Soils:				
Soll auger test noles:				
Evidence of poor infiltratio	n (clays, fines):			
Evidence of shallow bedro	ek:	∐ Yes ∐ No		
Evidence of high water tab	le (gleying, saturation):	Yes No		

SKETCH

FOLLOW-UP NEEDED TO COMPLETE FIELD CONCEPT			
	Obtain existing storm water practice as-builts		
INITIAL FEASIBILITY AND CONSTRUCTION CONSIDERATIONS			
	· · · · · · · · · · · · · · · · · · ·		
SITE CANDIDATE FOR FURTHER INVESTIGATION:	YES NO MAYBE		
IS SITE CANDIDATE FOR EARLY ACTION PROJECT(S):	YES NO MAYBE		
IF NO, SITE CANDIDATE FOR OTHER RESTORATION PROJECT(S):	YES NO MAYBE		
IF YES, TYPE(S):			

DESIGN OR DELIVERY NOTES

THIS RRI FIELD GUIDE TEMPLATE SHOULD BE COMPLETED WITH LOCAL DATA AND ADAPTED TO MEET THE NEEDS OF LOCAL RETROFIT FIELD CREWS

UNIQUE SITE ID NOMENCLATURE GUIDANCE

Unique Site ID = Subwatershed Acronym –Sequential Number

Subwatershed Name	Subwatershed Acronym	Investigation Type	Acronym
Basins A1 – E		Retrofit Reconnaissance Investigation	R
		Sequential Numbering begins a for each subwatershed	at "1"

DELINEATING DRAINAGE AREA AND ESTIMATING CURRENT IMPERVIOUS COVER

Simple Pipe – Drainage Area Ratios				
Pipe Diameter	Drainage Area			
(incnes)	(approx, acres)			
6	0.1 to 1			
12	1 to 2			
24	2 to 5			
36	5 to 25			
48	25 to 100			
60	100 to 200			

Land Use / Impervious Cover Relationships				
Land Use Category	Impervious Cover (%)			
Agriculture	1.9			
2 Acre Lot Residential	10.6			
1 Acre Lot Residential	14.3			
1/2 Acre Lot Residential	21.2			
1/4 Acre Lot Residential	27.8			
1/8 Acre Lot Residential	32.6			
Townhome Residential	40.9			
Multifamily Residential	44.4			
Light Industrial	53.4			
Commercial	72.2			

RETROFITTING OBJECTIVES

Core Retrofitting Objectives:	25% reduction in existing TP loads. Reduce runoff volume. Public education opportunities.
Designated Pollutant(s) of Concern:	Nutrients, TSS, chlorophyll a, bacteria, oil and grease
Type of Storage Needed:	1.2" x impervious for on-site areas. Drainage control on a case-by-case basis.

Event	Depth (inches)
Water Quality Storm	1.2"
Minimum Water Quality Depth ("walkaway" volume)	0.6"
Runoff Reduction Depth	· · · · · · · · · · · · · · · · · · ·
1-year 24-hour Storm (channel protection)	2.88"

Event	Depth (inches)
2-year 24-hour Storm	3.94"
10-year 24-hour Storm	6.63"
100-year 24-hour Storm	11.05"
*Annual rainfall = 20.87" with 46 da	ys over 0.1"

PREFERRED STORMWATER TREATMENT OPTIONS

Ability of Stormwater Treatment Options to Address Retrofit Objectives								
	Stormwater Treatment Option							
Retrofit Objective	Extended Detention	Wet Ponds	Wetlands	Bioretention	Filtering	Infiltration	Swales	Other
Correct Past Mistakes	•	•		•	۲	٠	•	۲
Reduce Flood Damage	•	٠		0	0	۲	0	0
Education / Demonstration	۲	۲	٠	•	•	٠	•	•
Trap Trash & Floatables	•	•	•	۲		0	0	0
Reduce Flows to Combined Sewer	۲	0	۲	•	0	٠	۲	
Renovate Stream Corridor	۲	•	•	•	0	۲	۲	0
Reduce Bank Erosion	•	۲	۲	۲	0	۲	۲	۲
Support Stream Repair	•	۲	•	۲	۲	•	۲	0
Full Watershed Restoration	•	•	•	•	•	•	•	٠
KEY Primary stormwater treatment option to address objective Secondary stormwater treatment option Supplemental stormwater treatment option 								

Comparison of Pollutant Removal Capability							
Stormwater			en finale a sur Santa	Stormwate			
Treatment Option	TSS	TP	TN	Metals	Bacteria	Organic Carbon	Oil & Grease
Extended Detention	•	Х	0	0	0	Х	۲
Wet Ponds	•	۲	0	۲	۲	0	۲
Wetlands	۲	۲	0	0	۲	Х	•
Bioretention	۲	Х	0	•	•	۲	•
Filtering	•	۲	0	۲	۲	۲	
Infiltration	•	۲	0	•	?	•	•
Swales	•	Х	0	۲	Х	۲	•
Rooftop				Varies			· · · · · · · · · · · · · · · · · · ·
 KEY ■ Excellent Removal (76 to 100%) ■ Good Removal (51 to 75%) ○ = Fair Removal (26 to 51%) X = Low Removal (0 to 25%) ? = Unknown Removal 			NOTE See Pr and ra of rem	S rofile Sheets nges and A oval rates	s in Chapter ppendix B fo	2 for precise r documentat	removal rates ion on derivation

COMPUTING THE RETROFIT STORAGE VOLUME

The water quality target volume can be determined using the following equation:

$V_t = P/12 * Rv * DA$

Where:

V _t =	Target storage volume (acre feet)
-	

= Target rainfall depth (in inches for the 90% storm)

Rv = Runoff coefficient = 0.05 + 0.009 (IC)

DA = Drainage area (acres)

12 = Conversion factor (inches to feet)

To calculate *channel protection target volume*, use the following equation:

$V_t = P/12 * IC/100 * DA * 0.6$

Where:

√ _t	=	Target storage volume (acre feet)
C	=	1-year 24-hour storm depth (inches)
С	=	Impervious cover (%)
DA	=	Drainage area (acres)
12	=	Conversion factor (inches to feet)

0.6 = Pond routing factor

COMPUTING AVAILABLE RETROFIT STORAGE

For ponds and wetlands, use the following simplified equation to estimate available storage:

V_{av} = 2/3 * d * SA

Where:

 V_{av} = Available storage at the site (acre-feet) SA = Surface area of the facility (acres)

d = Estimated max depth (feet)

2/3 = Average volume factor

For other stormwater treatment options, available storage can be estimated based on the typical surface area or depth requirements of different stormwater treatment options:

Drainage Area – Surface Area Relationships				
Stormwater Treatment Option	% of Contributing Drainage Area	Average Depth (ft)		
Dry ED Ponds	1 to 3%	6		
Wet Pond	1 to 3%	6		
Constructed Wetland	3 to 5%	2		
Bioretention	5 to 10%	1-2		
Sand Filters	0 to 5%	2		
Infiltration	0 to 5%	1-2		
Swales	5 to 15%	2		
Filter Strips	5 to 15%	1		
Other Retrofits	Sizing Considerations	Average Depth (ft)		
Dry wells	Each dry well can treat 500 sf of roof	1		
Rain barrel (50 gal)	Max area draining to rain barrel 500 sf	3-5		
Cistern (500 gal)	Max area draining to cistern 1000 sf	5-10		
Planter boxes	Max area draining to box 15,000 sf	1.0		
Green roofs	1 to 1 ratio of impervious area treated	0.5		
Permeable pavers	1 to 1 ratio of impervious area treated	0		
Rain gardens	10% of rooftop area	1		

MINIMUM SETBACKS

Minimum Distance *	To Be Maintained From	
10 feet	Property Line	
25 feet	Building Foundation	
100 feet	Septic System Fields	
100 feet	Private Well	
1,200 feet	Public Water Supply Well	
400 feet	Surface Drinking Water Source	
100 feet	Surface Water	
Do not submerge	Sewer Line	
10 feet	Dry Utilities	
15 feet	Overhead Wires	
10 feet	Road (Seepage)	
30 feet	Highway	
* Confirm that these common setbacks are consistent with local regulations		

EMERGENCY CONTACT INFORMATION

Field Crew #1 cell phone:	Katie Davis, 808-226-0728
Field Crew #2 cell phone:	
Fire, non-emergency:	
Police, non-Emergency:	
illegal dumping hotline:	AIR-EE, 808-838-8002
Blocked storm drain inlet or pipe:	AIR-EE, 808-838-8002
Erosion or drainage problems on private property:	
Erosion or drainage problems on public property:	
Sanitary sewer problems:	
Sediment from construction site entering stream:	
Septic leaks / septic tanks:	
Stormwater pond safety or maintenance issue:	AIR - EE, 808-838-8002
Swimming pool discharge:	
Trash and debris in parks and streams:	
Water main break:	

*All other emergency call Airport Emergency Services, 836-6670.

ATTACHMENT V

Desktop Analysis Retrofit List

		RRI	Retrofit			
Basin	ID #	Form	Туре	Area Description	Potential Retrofits	Field Notes
					Flow splitter on 4640 to	Near the end of a runway. No trees or
A1	A1-1	Х	SR-3	Outfall 4641	bioretention	birds.
					Filter strip, rain garden, SD	
A1	A1-2	NF	OS-9	Kalewa Street Sidewalks	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A1	A1-3	NF	OS-9	Lele Street Sidewalks	wetlands	Not enough space.
A10	A10-1	Х	SR-4	SD 4105	Filter in channel	
A10	A10-2	NF	SR-3	Between RA and 8R	Grass Swale	
A2	A2-1	X	SR-3	Outfall 4771	Flow splitter to bioretention	
					Filter strip, rain garden, SD	
A2	A2-2	Х	OS-9	Lagoon Drive Sidewalks	wetlands	Bioretention cell in road center.
				Building 223 Roof (Former UPS	Rain barrel, cistern, green roof,	
A3	A3-1	Х	OS-10	Supply Chain)	planter	Planter
					Filter strip, rain garden, SD	Consider park or rain garden on shoreline
A3	A3-2	-	OS-9	Lagoon Drive Sidewalks	wetlands	side of Lagoon Dr
					Filter strip, rain garden, SD	
A3	A3-3	NF	OS-9	Iolana Place	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A3	A3-4	NF	OS-9	Kaulele Place	wetlands	Not enough space.
					Bioretention islands, permeable	
A4	A4-1	X	OS-8	Parking Lot for Bldg 206	paver	
A4	A4-2	X	OS-10	Building 206 Rooftop	Cistern, green roof, planter	
					Filter strip, rain garden, SD	Consider park or rain garden on shoreline
A4	A4-3	Repeat	OS-9	Lagoon Drive Sidewalks	wetlands	side of Lagoon Dr
					Filter strip, rain garden, SD	
A4	A4-4	NF	OS-9	Kapalulu Place	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A4	A4-5	NF	OS-9	Nakolo Place	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A6	A6-1	NF	OS-9	Keehi Place Sidewalks	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A6	A6-2	Repeat	OS-9	Lagoon Drive Sidewalks	wetlands	
					Filter strip, rain garden, SD	
A6	A6-3	NF	OS-9	Pohakulana Place Sidewalks	wetlands	Not enough space.

		RRI	Retrofit			
Basin	ID #	Form	Туре	Area Description	Potential Retrofits	Field Notes
					Filter strip, rain garden, SD	
A6	A6-4	NF	OS-9	Mokuea Place	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A7	A7-1	-	OS-9	Lagoon Drive	wetlands	
					Filter strip, rain garden, SD	
A8	A8-1	NF	OS-9	Iako Place	wetlands	Not enough space.
					Flow splitter to bioretention at	Head difference too great and tidally
A9	A9-1	NF	SR-3	Outfall 4658	4655	influenced.
					Bioretention islands, permeable	
A9	A9-2	Х	OS-8	Palekona Street Parking Lot	paver	
					Bioretention islands, permeable	
A9	A9-3	NF	OS-8	Lagoon Drive Parking Lot	paver	Grading of parking area is an issue.
					Filter strip, rain garden, SD	
A9	A9-4	NF	OS-9	Palekona Street	wetlands	Not enough space.
					Filter strip, rain garden, SD	
A9	A9-5	Repeat	OS-9	Lagoon Drive	wetlands	
A9	A9-6	NF	OS-10	Bldg 422 Rooftop	Cistern, green roof, planter	Approx Roof Coverage 29,400 SF
A9	A9-7	NF	OS-10	Bldg 421 Rooftop	Cistern, green roof, planter	Approx Roof Coverage 53,150 SF
A9	A9-8	NF	OS-10	Bldg 420 Rooftop	Cistern, green roof, planter	Approx Roof Coverage 39,300 SF
B10	B10-1	Х	OS-7	Gate 34 Triturator	Containment structures	
					Filter strip, rain garden, SD	
B10	B10-2	NF	OS-9	Ewa Service Road	wetlands	
B10	B10-3	Х	OS-10	Ewa Concoure Rooftop	Cistern, green roof, planter	
B11	B11-1	Х	OS-10	New Hawaiian Air Rooftop	Cistern, green roof, planter	
B12	B12-1	NF	SR-4	Elliot Street Canal	In channel treatment, wet swale	
					Filter strip, rain garden, SD	
B13	B13-1	NF	OS-9	Elliot Street	wetlands	
B13	B13-2	Х	OS-10	Interisland Terminal Rooftop	Cistern, green roof, planter	
					Bioretention islands, permeable	
B15	B15-1	Х	OS-8	New Elliot St Parking Lot	paver	
B17	B17-1	-	SR-4	Swale between A and 8L	Enhance current BMP	Swale sufficient
B3	B3-1	NF	SR-3	Between RA and 8R	Grass Swale	
B4	B4-1	NF	SR-4	Canal from T-Hangars	Wet swale or offline bioretention	Limited by runway to west
B4	B4-2	-	Other	Outfall 4747	Needs Repairs	

		RRI	Retrofit			
Basin	ID #	Form	Туре	Area Description	Potential Retrofits	Field Notes
B6	B6-1	Х	SR-4	Hickam Canal	Wet swale or offline bioretention	Develop current detention basin.
B6	B6-2	NF	Other	Locate 10276		Canal on Hickam area
B6	B6-3	-	OS-7	Outfall 10274	Filter	Addressed with B6-1
B9	B9-1	Х	OS-10	Central Concourse Rooftop	Cistern, green roof, planter	
D1	D1-1	Х	OS-10	New Mauka Concourse Rooftop	Cistern, green roof, planter	
D10	D10-1	Х	SR-2	Culvert near SD 5466	Expand storage above culvert	
D10	D10-10	-	Other	Bridge Near 5464	Channel erosion repair	Addressed with D10-1
D10	D10-2	-	SR-4	Access A Canal	In channel treatment, wet swale	Addressed with D10-1
D10	D10-3	Х	OS-7	Gate 6 Triturator	Containment structures	
					Bioretention islands, permeable	
D10	D10-4	Х	OS-8	Lot G	paver	
					Bioretention islands, permeable	Bioretention area east and west of parking
D10	D10-5	NF	OS-8	Lot Q	paver	lot already present.
					Bioretention islands, permeable	
D10	D10-6	Х	OS-8	Lot R	paver	
					Bioretention islands, permeable	
D10	D10-7	Х	OS-8	Cell Phone Waiting Lot	paver	
					Filter strip, rain garden, SD	
D10	D10-8	NF	OS-9	Aolewa Place	wetlands	Some filter strips already in place.
D10	D10-9	NF	OS-10	Diamondhead Concourse Rooftop	Cistern, green roof, planter	Area of possible green roof space too small.
D11	D11-1	NF	SR-4	Kaloaloa Canal	In channel treatment, wet swale	Not enough space.
D11	D11-2	X	OS-7	Maintenance Baseyard	Source Control	Sweeper evap area and stockpile barrier
					Bioretention islands, permeable	
D11	D11-3	NF	OS-8	Baseyard Parking Lot	paver	Not enough space.
D13	D14-1	Х	SR-4	Kaloaloa Canal	In channel treatment, wet swale	
					Filter strip, rain garden, SD	
D15	D15-1	Repeat	OS-9	Kalewa Street Sidewalks	wetlands	
					Filter strip, rain garden, SD	
D16	D16-1	Repeat	OS-9	Kalewa Street Sidewalks	wetlands	
D16	D16-2	Х	OS-11	Vacant Lot by Pump Station	Pervious paver, rain garden	Determine future use
						Main goal is to prevent oils and fuels from
D16	D16-3	Х	OS-7	Vip Trans	Trench to OWS at back of facility	entering canal.

		RRI	Retrofit			
Basin	ID #	Form	Туре	Area Description	Potential Retrofits	Field Notes
					Filter strip, rain garden, SD	Center and perimeter bioretention already
D17	D17-1	-	OS-9	Rodgers Blvd	wetlands	in place.
				International Parking Structure		Not sufficent space for size of cistern
D2	D2-1	NF	OS-10	Rooftop	Cistern, green roof, planter	required.
					Filter strip, rain garden, SD	
D2	D2-2	NF	OS-9	Ala Onaona Street	wetlands	
					Filter strip, rain garden, SD	
D3	D3-1	-	OS-9	Rodgers Blvd	wetlands	Vegetation in place, need only conveyance
					Bioretention islands, permeable	
D4	D4-1	NF	OS-8	Parking Lot J	paver	Grading of parking area is an issue.
				Overseas Terminal Parking		Not sufficent space for size of cistern
D4	D4-2	NF	OS-10	Structure (Lot D)	Cistern, green roof, planter	required.
D5	D5-1	Х	OS-10	Terminal Rooftop	Cistern, green roof, planter	Consider public demonstration
					Bioretention islands, permeable	
D6	D6-1	-	OS-8	Employee Lot C	paver	Perimeter bioretention already in place.
					Bioretention islands, permeable	Will be removed as a part of the
D6	D6-2	-	OS-8	Public Parking Lot F	paver	modernization plan.
				Overseas Terminal Parking		Not sufficent space for size of cistern
D6	D6-3	NF	OS-10	Structure (Lot D)	Cistern, green roof, planter	required.
E	E-1	Х	SR-4	Canal North of Aolele Street	In channel treatment, wet swale	May require dechannelization
Е	E-2	X	OS-7	Bldg 180 Autobodies	Source Control	
E	E-3	X	OS-7	2875 Ualena Investment Co.	Source Control	
E	E-4	Х	OS-7	Royal Hawaiian Movers	Source Control	
E	E-5	Х	OS-7	Punaluu Builders	Source Control	
Е	E-6	X	OS-7	So Ono Food Products	Source Control	
					Filter strip, rain garden, SD	
Е	E-7	NF	OS-9	Paiea Street	wetlands	
					Filter strip, rain garden, SD	
E	E-8	NF	OS-9	Aolele Street	wetlands	
					Filter strip, rain garden, SD	
Е	E-7	Х	OS-9	Paiea Street	wetlands	

ATTACHMENT VI

Final Potential Retrofit List and RRI Forms

ATTACHMENT VII

Hotspot RRI Forms