REMEDIAL ALTERNATIVES ANALYSIS REPORT For LEAD IMPACTED SOIL AT HAKALAU BEACH PARK, HAKALAU, HAWAII

Prepared For: Hawaii State Department of Transportation

> Prepared For: KSF Inc. 615 Piikoi Street, Ste 300 Honolulu, Hawaii 96734

> > Prepared By:

Kealamahi Pacific Consultants, LLC. 111 Hekili Street, Ste A601 Kailua, Hawaii 96734

> October 2022 Updated April 2023 Final May 2023

This page was intentionally left blank.

Table of Contents

1	Intro	oduction and Purpose	1		
	1.1	Purpose	1		
2	Bacl	ground	3		
2.1 Site		Site Description	3		
	2.2	Climate	3		
	2.3	Soils/Geology	3		
	2.4	Surface Water	3		
	2.5	Groundwater	3		
	2.6 Historic Land Use				
	2.7	Current/Future Land Use	5		
3	Mag	nitude and Extent of Contamination	6		
	3.1	X-Ray Fluorescence: HDOH 2016	6		
	3.2	Paint and Soil Sampling: ESI 2016	7		
	3.3	Soil Sampling: EQI February and November 2020	7		
	3.4	Soil Sampling: KPC Spring 2022 (April 18-20 and May 10-12)	8		
	3.4.3	L Sediment Sampling from Stream Bank	.8		
	3.4.2	2 Delineation Sampling North and South Stream Bank Benches Results	.9		
	3.4.3	3 Groundwater Sampling Results	.9		
	3.4.4	1 Surface Water Sampling Results	10		
4	Envi	ronmental Hazard Evaluations	21		
	4.1	Chemicals of Potential Concern	21		
	4.2	Exposure Setting	21		
	4.3	Potential Human/Ecological Receptors	22		
	4.4	Exposure Pathway Analysis	22		
	4.4.	L Direct Contact Pathways	22		
	4.4.2	2 Air Exposure Pathways	23		
	4.4.3	3 Surface Runoff and Sediment Exposure Pathway	24		
	4.4.4	4 Groundwater Exposure Pathway	24		
	4.5	Environmental Hazard Evaluation Summary	26		
	4.5.1	L COPC Sources and Release Mechanisms	26		
	4.5.2	2 Pathways and Exposure Routes	26		
	4.5.3	3 Potential Receptors Current and Future Land Use	26		
	4.5.4	Complete Exposure Pathways	26		
	4.5.	5 Potentially Complete Exposure Pathways	26		
	4.5.0	Exposure to Lead Leaching	27		
5	Esta	blishing Alternatives	29		
	5.1	Potential ARARs and TBC Criteria	29		
	5.1.	Potential Chemical-Specific ARARs and TBCs	29		
	5.1.2	2 Potential Location-Specific ARARs and TBCs	29		
	5.1.3	Potential Action-Specific ARARs and TBCs	30		
	5.2	Remedial Action Objectives	30		
	5.3	General Response Actions	30		
6	Deta	ailed Analysis of Alternatives	31		

	6.1 6.2 6.3	Alte Alte Alte	rnative 1: Recycle or Reuse rnative 2: Destruction or Detoxification rnative 3: Separation, concentration, or volume reduction	.31 .31 .31
	6.4	Alte	rnative 4: Immobilization of Hazardous Substances	.31
	6.5	Alte	rnative 5: On-site or off-site disposal, isolation, or containment	.33
	6.5.	1	Alternative 5a: On-site isolation and containment	.35
	6.5.	2	Alternative 5b: Removal of all soil that exceeds 200 mg/kg for lead and replacement w	/ith
	clea	n fill		.36
	6.5. repl	3 acem	Alternative 5c: Removal of soil which exceeds 800 mg/kg for lead, containment, a ent with clean fill. Soil cap for soil which exceeds 200 mg/kg but is below 800 mg/kg	and . 40
	6.6	Insti	itutional Controls or Long-Term Monitoring	.42
	6.6.	1	Alternatives 6a: No Action	.42
	6.6.	2	Alternatives 6b: Institutional and Engineering Controls	.42
7	Con	npara	tive Analysis of Remedial Alternatives	.44
	7.1	Ove	rall Protectiveness	.44
	7.2	Com	pliance with ARARs	.48
	7.3	Red	uction of Toxicity. Mobility, and Volume through Treatment	.48
	7.4	Long	z-Term and Short-Term Effectiveness	.52
	7.5	Imn	lementability	.52
	7.6	Fstir	mated Costs	.53
		Lotin		
8	Pref	ferrec	d Alternative	.56
9	Refe	erenc	es	.58

FIGURES

Figure 1-1: Site Location and Tax Map Key Parcels: Hakalau Beach Park	2
Figure 2-1: Hakalau sugar mill and town	4
Figure 2-2: Aftermath of 1946 Tsunami. Facing South.	5
Figure 3-1: 2016 and 2020 DU and Sample Results Hakalau	15
Figure 6-1: Alternative 5a or 5b, Removal 200+ mg/kg and Capped Soil Areas	38
Figure 6-2: Removal of Soil Over 800 mg/kg, Cap 200 mg/kg	41

TABLES

Table 1-1: TMK and Landowner	2
Table 3-1: 2016, 2020, and 2022 Combined Soil Sample Results	11
Table 3-2: Hakalau Beach Park Southern Bank	19
Table 4-1: Conceptual Site Exposure Model	28
Table 6-1: HDOT and Privately Owned Parcels which exceed 800 mg/kg	34
Table 6-2: Hawaii County and Privately Owned Parcels	34
Table 6-3: Alternative 5a: No Removal, Cap Only, Cubic Yards	35
Table 6-4: DUs which Failed TCLP (2016) and Require Mainland Disposal	36
Table 6-5: Alternative 5b, Soil Removal 200+ mg/kg, Clean Fill, Cubic yards	37
Table 6-6: Alternative 5c - Soil Removal 800+ mg/kg, Clean Fill Cubic Yards	40
Table 7-1: Alternatives Analysis - Protectiveness	46
Table 7-2: Reduction of Toxicity, Mobility, and Volume through Treatment	
Comparison	50
Table 7-3: Cost Comparison	54
Table 8-1: Evaluation of Cleanup Alternatives: Hakalau RAA	56

APPENDICES

Appendix A: Laboratory An	ialytical Reports
---------------------------	-------------------

- Appendix B: Synthetic Precipitation Leaching Procedure Batch Test Leaching Method Results
- Appendix C: Applicable or Relevant and Appropriate Requirements (ARARs) and To-Be Considered (TBC) Criteria
- Appendix D: Remedial Alternative Cost Comparison
- Appendix E: Treatability Study

LIST OF ACRONYMS AND ABBREVIATIONS

ARARs	Applicable or Relevant and Appropriate Requirements
bgs	below ground surface
c-EHMP COC COPC CSM CY	Project-specific Construction Environmental Hazard Management Plan Contaminant of Concern Contaminants of Potential Concern Conceptual site model Cubic vard(s)
DU	Decision Unit
EAL EHMP EPA	Environmental Action Level Environmental Hazard Management Plan United States Environmental Protection Agency
HDOH HDOH TGM	State of Hawaii Department of Health State of Hawaii Department of Health Technical Guidance
HDOT HEER	Manual State of Hawaii Department of Transportation Hazardous Evaluation and Emergency Response
Kd	Desorption coefficient (SPLP test results)
LBP	Lead-Based Paint
mg/kg	Milligram per kilogram
RAA RCRA RSL	Remedial Alternatives Analysis Resource Conservation and Recovery Act Regional Screening Levels
SCP SPLP	State Contingency Plan Synthetic Precipitation Leaching Procedure
TBC TCLP TMK	to-be-considered Toxicity Characteristic Leaching Procedure Tax Map Key
USDA NRCS	United States Department of Agriculture National Resource Conservation Service- United States Environmental Protection Agency

1 Introduction and Purpose

The site is located at Hakalau Beach Park, Hakalau, Hawaii on the Hamakua Coast approximately 14 miles north of Hilo HI. The site is used as a public park for general recreation, swimming, surfing, and fishing (Figure 1-1). The site includes the Hawaii County Tax Map Key (TMK) (3) 2-9-002 Parcel 080, which is owned by the County of Hawaii. The State of Hawaii Department of Transportation (HDOT) owns an easement under the Hakalau Bridge that extends out ten feet on either side of the bridge which is TMK (3) 2-9-002 Parcel 999. The access road transits across two privately owned triangular parcels which straddle the stream. Table 1-1 lists the TMKs and landowners of the properties in this project.

The park and surrounding area are located below the Hakalau Stream Bridge. This steel girder and trestle bridge lie 250+ feet above the park area. The bridge was originally constructed in 1911, and lead-based paints (LBPs) were frequently applied to the structure throughout the 20th Century (Historic Hawaii 2022). Lead-based paint flaked off and may have been spilled during application. The lead paint was removed from the bridge in 2000, but the area below the bridge now has lead-impacted soil.

1.1 Purpose

Lead-impacted soil has been documented at Hakalau Beach Park with potential impacts on human health. Several site investigations were conducted in 2016, 2020, and 2022 to identify and delineate the extent of lead-impacted soil within Decision Units (DUs) at the site. Triple phosphate treatment was also tested in 2022.

This report evaluates existing data and associated human health and/or environmental hazards and provides an analysis of potential remedial alternatives at the site.

Figure 1-1: Site Location and Tax Map Key Parcels: Hakalau Beach Park

Table 1-1: TMK and Landowner

ТМК	Landowner
329002080	County of Hawaii
329002999	State of Hawaii Department of Transportation
331001002	Maria and Steven Wolf
331001001	Marian Land Company
329002025	Maria and Steven Wolf

2 Background

2.1 Site Description

The site is located in a steep gulch and is bisected by the wide and rocky Hakalau Stream which opens to the Pacific Ocean. A paved road descends into Hakalau Gulch and crosses Hakalau Stream via a stabilized channel crossing and becomes gravel/dirt/rock. The southern embankment includes the County of Hawaii Park parcel. This parcel is open and grassy, with a concrete-floor pavilion, and the partial walls from the former Hakalau Sugar Mill. Another dirt/rock road serves the northern embankment. The area under the Bridge is rocky with tall grasses.

2.2 Climate

The site is located on the Hamakua Coast of Hawaii Island on the windward side of the island. This area experiences higher than average rainfall than most of Hawaii. The average annual rainfall for the site is approximately 138 inches. March is the wettest month with over 15 inches of rainfall and June is the driest with approximately 8 inches (Giambelluca et al 2013). Temperatures have minimal variances with an average low of 65 to 70 degrees Fahrenheit and average highs of 79 to 84 degrees Fahrenheit (NOAA 2019).

2.3 Soils/Geology

The site is located adjacent to the Hakalau Stream mouth. Soils are identified by the United States Department of Agriculture National Resource Conservation Service (USDA NRCS) as Hilo Rock Outcrop, consisting of hydrous silty clay loam on the surface (USDA NRCS 2019). This soil consists of lava flows broken into a base of river cobble. The stream banks experience frequent erosion during storms and heavy rains.

2.4 Surface Water

Hakalau Stream bisects the site. This is a 29 mile long, wide freshwater perennial stream with a braided channel. It is part of a nine square mile watershed. The stream is not channelized and the banks shift during heavy flows. The mouth of the stream often has a rocky bar which forms a deeper pool in the stream but does not stop the flow to the ocean. A former seawall is angled on the southern edge, but it is now undermined and surrounded by cobbles. Hakalau County Park attained the Hawaii Department of Health (HDOH) water quality parameters for enterococci in 2022 (HDOH 2022).

2.5 Groundwater

The site is located below the Underground Injection Line according to the HDOH Safe Drinking Water Branch (HDOH SDWB 2019). Groundwater is not a source of drinking water. The site is primarily at sea level to approximately 10 feet above mean sea level.

2.6 Historic Land Use

The parcels targeted for remedial action alternatives are below Hawaii Belt Road in the Honomu-Kahua ahupua'a.

Figure 2-1: Hakalau sugar mill and town. Railroad bridge with train, flume system.

Source: Hakalau Home 2022

The site itself had been agricultural. In 1881 the Hakalau Sugar Mill was built at the southern embankment. Hakalau Gulch Camp (worker housing) on the northern embankment (Marian Land Parcel) is visible on topographic maps by 1915 and in 1925 photos. The current bridge was previously a railroad bridge that was constructed in 1911. It is identified by the State Historic Preservation Office as SHPD Historic Site Number 10-16-9090 (Historic Hawaii 2022). The bridge had multiple layers of lead-based paint applied to the metal structure throughout the 20th century. The associated plantation flume ran parallel to the bridge, and it's possible that this metal support structure also was a contributing source of lead-based paint (Figure 2-1).

The mill, railroad, flume, and the Hakalau Gulch Camp were destroyed in the 1946 tsunami (Figure 2-2). The mill reopened the following year, but the housing was not reconstructed. The railroad was converted to a highway in the 1950s, and the flume was not rebuilt. The company merged, and the mill remained in operation until 1974 (Hakalau

Home 2022). The main structure was demolished by 1979, but the foundation outline still appears on topo maps until 1992. The seawall and portions of the former plantation structure remain on-site today.

Figure 2-2: Aftermath of 1946 Tsunami. Facing South. Seawall still present on-site.

2.7 Current/Future Land Use

The site is currently a public County of Hawaii-managed park, which is used for general recreation, surfing, and fishing (Figure 1-1). The site is anticipated to remain a public park.

Source: Hakalau Home 2022

3 Magnitude and Extent of Contamination

Previous site investigations on bridges along the Hamakua Coast identified that leadbased paint flakes and arsenic could be a concern in the HDOT Highways right of way below the bridges.

Multi-increment soil sample investigations in 2016 identified lead-impacted soils in 15 of the 19 DUs at the site. One DU was paved and not sampled. Only four DUs met the HDOH Hazard Evaluation and Emergency Response Branch (HEER) Unrestricted Land Use (residential land use) Environmental Action Levels (EALs) for total lead (HDOH revised Fall 2017). Follow-up sampling in 2020 and 2022 expanded the DU areas and included additional depth profiles. See Table 3-1 for 2016, 2020, and 2022 combined soil sample results at Hakalau Beach Park.

The sampling confirmed that the southern embankment HDOT ROW contained the highest lead concentration sample results. The area under the Hakalau bridge had lead concentrations that exceeded the gross contamination levels (<1,000 milligrams per kilogram [mg/kg]) in soil beginning from surface soil to a depth of 12-inches below ground surface (bgs). The highest results in the ROW were 25,000 mg/kg of total lead.

Ultimately every DU in the HDOT ROW exceeded both the HDOH Tier 1 EAL for unrestricted land use and the construction/trench worker action level of 800 mg/kg of total lead. Levels that exceed the construction trench worker EAL require a Construction EHMP while working on the site and may require additional PPE and monitoring equipment. The areas of exceedance were not confined to the ROW. Lead-impacted soil was found in the adjacent properties (Figure 3-1), primarily upstream on the southern embankment. In total approximately 6,000 sq. feet on the Northern Embankment and approximately 43,000 sq. feet on the southern embankment both the unrestricted land used EAL and the 800 mg/kg lead EAL for Construction/Trench Workers. Impacts decreased at greater distances from the bridge. Total lead remained between 200 mg/kg and 800 mg/kg even 80 to 100 feet from the bridge in the northern embankment. Lead-impacted soils were found approximately 225 ft from the bridge on the southern embankment.

The County of Hawaii park area DUs were between 200 mg/kg and 800 mg/kg within the primary park area. No DUs exceeded 800 mg/kg. Lead-impacted soils covered an area of approximately 43,000 sq ft of the parcel (the majority of the park space). Some DU depth profiles in the County of Hawaii parcel met the HDOH Tier I EALs for unrestricted land use.

3.1 X-Ray Fluorescence: HDOH 2016

In 2016, the HEER Office performed a surface soil site investigation to evaluate the impacts of LBP and sugar plantation activities at the site. HDOH used an X-ray Fluorescence (XRF) analyzer to screen for lead, arsenic, and mercury in a single composite soil sample. This single-exposure DU was located directly below Hakalau

Bridge and represented the most probable location of the lead-impacted soil. Thirty (30) increments of soil were collected from the top 2 to 3 inches of soil within this DU. The DU was approximately 120-feet long by 30-feet wide.

Sixteen (16) XRF measurements were taken from the combined incremental soil samples and averaged. The average lead concentration was 196 milligrams per kilogram [mg/kg] and the average arsenic concentration was less than 8.7 mg/kg. Mercury was not detected in any of the XRF measurements (HDOH, 2016).

3.2 Paint and Soil Sampling: ESI 2016

Due to high levels of LBP found at other locations on the Hamakua Coast, ESI tested paint chips that were found on the bridge footings and steel girders (ESI, 2016). Greyishblack paint chips were collected from the base of four (4) of the steel girders. Lead concentrations ranging from 89 to 510 mg/kg and arsenic concentrations ranging from 61 to 110 mg/kg were found. Red and black paint chips on the rocks beneath the bridge were also tested, and lead was detected in the red paint at 11,000 mg/kg, and in the black paint at 2,700 mg/kg. Arsenic was detected in the red paint at 130 mg/kg and was not detected in the black paint (ESI, 2017a).

Additional multi-incremental soil samples were collected from nine DUs in Spring 2016 and twelve more DUs in Fall 2016 (Table 1-1) at depths of 0 to 3 inches bgs and 3 to 6 inches bgs. The 2016 soil sample results found exceedances for lead, with results as high as 25,000 mg/kg directly below the bridge. Nine DUs exceeded the HDOH Construction/Trench Worker Direct Exposure EAL of 800 mg/kg for lead, and eight exceeded the HDOH Gross Contamination EAL of 1000 mg/kg for lead.

As a result of the high lead exceedances, soil from seven DUs was analyzed by the Toxicity Characteristic Leaching Procedure (TCLP) (KPC 2022). TCLP is a soil sample extraction method for the assessment of the toxicity of heavy metals or other compounds in contaminated soil media. The method incorporates an extraction fluid with a pH that simulates the acidic conditions that soil if it were disposed of in a permitted landfill.

If TCLP is detected at concentrations that exceed the Resource Conservation and Recovery Act (RCRA) hazardous waste criteria (in the case of lead it is 5 mg/L), the material is classified as hazardous waste and must be disposed of in the continental United States as there are currently not any landfills in Hawaii that can accept this type of waste.

TCLP analysis results for three of the DUs exceeded the RCRA listed hazardous waste criterium of 5 mg/L (DU-1B, 11A, and 21A) Figure 1-1. All of these are located on the southern embankment, under the middle girder (KPC 2022). However, it is estimated that DU2 could also fail TCLP based on the high total lead concentrations.

3.3 Soil Sampling: EQI February and November 2020

In 2020, DUs were added to identify the extent of lead-impacted soil. DU depths were extended to 12 inches bgs unless refusal occurred.

Due to the number of DUs, DUs with similar 2016 sample results (above 200 mg/kg and above 800 mg/kg) were consolidated into larger DUs. Table 3-1 and Figure 3-1 summarized data from all sampling events and include the former DU and revised DU numbers. Data summary tables and laboratory reports are presented in Appendix A.

As presented in Table 3-1, the southern bank bench of the HDOT ROW under the Hakalau Bridge exhibited the highest lead concentration sample results even to depths of 12 inches bgs. Sample results for total exceeded the gross contamination levels (<1,000 mg/kg).

In general, the concentration of lead dropped as depth increased, but not at all of the DUs. The DUs upstream of the HDOT ROW on the southern embankment saw an increase in total lead concentrations (Table 3-1). Additional sampling also found that soil under the northern embankment, under the girder exceeded the HDOH Construction/Trench Worker EAL for 800 mg/kg for lead.

3.4 Soil Sampling: KPC Spring 2022 (April 18-20 and May 10-12)

Concerns about the extent of impacts along both banks of the stream valley floor, shoreline, and the leachability of lead-impacted areas transferring to groundwater and surface water were addressed in the 2022 sampling. The purpose of the 2022 sampling was to determine where soil at the site no longer exceeded the unrestricted land use EAL of 200 mg/kg for lead.

Sampling had been planned for 2021, however, it was delayed due to COVID and right of entry documentation to access private land areas in the vicinity of the project area. Surface and subsurface soil samples were collected along the northern bank as well as upstream at the southern embankment. As shown in Figure 3-1 and Table 3-1 the vertical and horizontal extent of the lead-impacted soil had not been established further upstream and downstream of the bridge on the northern stream bank nor upstream of the bridge on the southern stream bank nor upstream of the bridge on the southern stream bank nor upstream of the bridge on the southern stream bank nor upstream of the bridge on the southern stream bank

3.4.1 Sediment Sampling from Stream Bank

During this mobilization, sediment sampling had been proposed along both sides of the stream bank (KPC, 2022). When KPC arrived to perform the first of two sampling events in April 2022, extensive scouring, associated with a heavy rain event days preceding the sampling had removed all fine sediment associated with the planned sediment DUs and only large cobble and boulder-sized material remained on the banks. As a result of the high stream discharge rate following the rain event, the vast majority of the sediment formerly along the banks of either side of the stream mouth had been transported out into Hakalau Bay. KPC discussed this event with Mr. Thomas Gilmore (HDOH HEER Remedial Project Manager) who visited the site on April 18, 2022, while KPC was conducting sampling on the northern bank of the Hakalau Stream. Mr. Gilmore concurred that sampling for sediment was not practicable since there was longer fine sediment available to sample in the four planned DU locations on either side of the stream.

KPC returned approximately one month later on May 10, 2022, to complete the sampling activities and observed that the sediment in the planned sediment sampling DUs still had not fully returned to its former position. Coarse cobble and boulder-sized sediment made up the bulk of the stream shoreline in these areas, while the gravel-sized sediment was still in the littoral region of the bay and was only beginning the regress into the mouth of the stream.

Based on the April and May 2022 observations it was apparent that the fine sediment is displaced from the mouth of the stream into Hakalau Bay following high rainfall events, then constant wave action winnows the fine sediment particles out of the slug of new sediment entering the bay and slowly pushes the remaining courser sediment back in the mouth of the stream over days/weeks. The rate that sediment returns into the mouth of the stream depends on the wave conditions and a large portion of the fine sediment formerly in the estuary likely remains offshore and the vast majority of the material originally transported into the bay is redeposited is medium to coarse gravel and cobble sized material. This cyclical process is repeated perhaps a couple of times per year on the scale that we observed, and several times per year on a smaller scale that acts to continuously winnow out the fine sediment (including fine lead particles in the sediment) from the mouth of the stream. Based on these observations it is unlikely that there is a complete exposure pathway to human receptors (beachgoers, fishermen) posed by lead in the beach and river sediments.

3.4.2 Delineation Sampling North and South Stream Bank Benches Results

As shown in Figure 3-1 the vertical and horizontal extent of the lead-impacted soil had not been established on the upstream and downstream sides of the bridge on the northern stream bank and in the upstream direction of the southern stream bank. The purpose of the 2022 sampling events was to identify the limits of the contamination "hot zone" to the point where concentrations of total lead in soil fall below the HDOH Tier 1 EAL for unrestricted land use (200 mg/kg).

The results showed a drop-off in total lead concentrations approximately 225 feet upstream along the southern stream bench and 125 feet along the northern stream bench. The goal was to identify the limits of contamination, where soil met HDOH Tier 1 EALs for unrestricted land use (Figure 3-2). In the 2022 sampling event, no DU exceeded 800 mg/kg of total lead. Three DUs exceeded the HDOH Tier 1 EALs for unrestricted land use (Table 1-2).

3.4.3 Groundwater Sampling Results

The plans to collect a groundwater sample from within the highly contaminated zone represented by DUs 32 and 33 using an auger and a gas-powered direct push rig were abandoned based on the observation of the sub-surface cross-section of the southern stream bank adjacent to these DUs. On May 10, 2022, a steep stream bank resulted from high volumes of water scouring the southern bank exposed a 4-foot cross-section that exhibited that a thin veneer of a coarse gravel layer mixed with sand and silt extend from

the surface to about 8-12 inches below the upper surface layer. This unit was underlain by rounded large cobble to small boulder-sized rock unit from the base of the described upper layer to the base of the stream bank cross-section where it was covered by other course sediments that made up the rest of the stream bank sediment. This type of geologic unit would not allow a boring to be installed using the available drilling methods and in lieu of the temporary monitoring well, an additional surface water sample collected from the slow meandering stream that passes through the southern side of the steam where the DUs with the highest lead concentrations were found this portion of the stream bench was conducted as a proxy to evaluate the potential soil groundwater leaching effects. This is described in greater detail below.

3.4.4 Surface Water Sampling Results

In accordance with the Final SAP, Addendum samples were collected from surface water at two locations from the small stream flowing along the base of the southern embankment that supports the access road down the side of Hakalau Valley (KPC, 2022). An additional location was added at the approximate midpoint where the stream passes through the highly contaminated zone (DUs 32 and 33). DU sample from the stream was conducted following the HEER Technical Guidance Manual (HDOH TGM) and the Hawai'i Administrative Rules (HAR) Chapter 11-54 (HDOH, 2014).

This tributary stream has a width of approximately 6 feet and a depth of approximately 3 feet and runs parallel to the southern wall of the valley, then cuts north and discharges into the Hakalau stream, close to the public beach area. Because this stream passes through the most contaminated areas identified, a sample was planned to be collected in the SAP where the stream turns north and discharged into the main course of Hakalau stream just before where an open concrete dip stream crossing is present in the access roadway connecting to the park, As described above, this point was selected to assess the potential that lead in the soil may be leaching into the surface water as it passes through this highly contaminated zone as described above. These surface water DUs and presented as 202249, 202250, and 202251 in Figure 3-2.

A total of three (3) surface water samples were collected and tested for total lead concentration (mg/L). Concentrations of lead in the water samples were all below the laboratory method reporting limit. Results indicate that there is likely no impact on the surface water body via lead mobilizing from soil to groundwater and groundwater then discharging to surface water.

This is supported by the results of the Batch Test Leaching Model (HDOH, 2007), presented in Section 4.4.4 of this document, which concluded that the mobility of lead in the soil was very low based on the result of the Synthetic Precipitation Leaching Procedure (SPLP) results of the ISM samples collected from the DUs with the highest concentration of lead (DUs 32 and 33).

Table 3-1: 2016, 2020, and 2022 Combined Soil Sample Resultsat Hakalau Beach Park

Lead results above gross contamination (1,000 mg/kg)					
Lead results above HDOH Tier 1 EAL above Construction/Trench Worker Scenario (800 mg/kg), but below gross contamination (1,000 mg/kg)					
Lead results above HDOH Tier 1 EAL Unrestricted Land Use (200 mg/kg), but below Construction/Trench Worker Scenario (800 mg/kg)					
Lead results below HDOH Tier 1 EAL Unrestricted Land Use (200 mg/kg)					

2020/2022	2016	Previous Semale ID	Sample	Depth	Previous Lead	Current Use	Owner
00	00		Date	(in)	Results (mg/kg)	Description	
	1	DU-1	2016	0-3	25,000	Area around the	
	1	DU-1D	2016	0-3	23,700	bents 4 and 5	
	1	DU-11	2016	0-3	23,600	under the bridge	HDOT
	1	DO-IR	2016	3-6	7,88U	on the south side	
32/33	1	DU-1B	2020	6-12	3,250°, 3,360°, 2,960*	stream.	
	0		2010	0.0	10.000	D () ()	
	2		2016	0-3	10,200	Between the	
	2	D0-2B	2016	3-0	9,480	road and	HDOT
32/33	2	DU-2B	2020	6-12	3,250^; 3,360^; 2,960*	bent 6	
	3	DU-3a	2016	0-6	69.4	Southern stream bank	HDOT
	4a	DU-4a	2016	0-6	3.81	Northern stream bank.	HDOT
Observed	4a	DU-9+	2016	0-6	2.8		
scour in	4a	DU-10+	2016	0-6	2.52		
Feb. 2020	4b	DU-4b	2016	6-18	2.99		
	5	DU-5	2016	0-3	3,730	Northern stream bank. Areas	НООТ
34	5	DU-5	2020	0-6	221*	around the bridge	TIDOT
34	5	DU-5	2020	6-12	918*	bents.	
34	6	DU-6	2016	0-3	282	Northern bank: Access road between Bents 9-10	HDOT
	7	DU-7	2016	0-3	2,530		
	7	DU-7B	2016	3-6	Refusal	Road on S.	
33	7	DU-7B	2020	6-12	3,538*	Embankment, between Bents 5 and 6.	HDOT
	8	DU-8	2016	0-3	1,850	Vegetated area	
32	8	DU-8	2020	3-6	13,500*	on S.	
8B	8	DU-8	2020	3-6	2,680**	embankment	Wolf Property
32	8	DU-8	2020	6-12	7,510*	south of the	
8B				12+	Refusal	park area.	

2020/2022 DU	2016 DU	Previous Sample ID	Sample Date	Depth (in)	Previous Lead Results (mg/kg)	Current Use Description	Owner
	11	DU-11A	2016	0-3	8,820	Narrow DLL south	
	11	DU-11B	2016	3-6	Refusal	of DU1	HDOT
32/33	11	DU-11B		6-12	3,538*; 7510*	01201	
	12	DU-12A	2016	0-3	1,410		
	12	DU-23A	2016	0-3	1,040	Grassy area	
	12	DU-24A	2016	0-3	897	likely used by	Marian Land
12	12	DU-12A/B, 24A/B	2016	4-6	738**	public.	Co.
	12	DU-12B	2016	3-6	773		
	40	511.404	0040		0.57	0	
	13	DU-13A	2016	0-3	357	Grassy area,	Marian Land
	13	DU-13B	2016	3-6	372	nublic	Co.
	14	DU-14A	2016	0-3	57	Driveway area,	Maniana Lanad
	14		2016	3.6	03.4	acceptable for	Marian Land
	14	D0-14B	2010	5-0	35.4	public use	00.
		511.454					
	15	DU-15A	2016	N/A	Paved	Paved drainage	Marian Land
	15	DU-15B	2016	N/A	Paved	swale.	C0.
	16	DU-16A	2016	0-3	339	Park area	
	16	DU-16B	2016	3-6	348	Heavy use by	County of
27	16			6 1 2	368*	public.	Hawaii
57	10	00-100		0-12	300	•	
	17	DU-17A	2016	0-3	232		
	17	DU-17B	2016	3-6	161	Grassy area	County of
27	17		2010	6 10	269*	south of park.	Hawaii
	17	D0-17B	2020	0-12	300		
						One en la Deula	
	18	DU-18A	2016	0-3	104	Grassy Park	County of
	18	DU-18B	2016	3-6	226	of Hakalau	Hawaii
38	18	DU-18B	2020	6-12	764*	stream.	riattai
	19	DU-19A	2016	0-3	28.4	Grassy strip	
	10		2016	3-6	1/1 1	west of DU 18.	County of
	19	D0-19B	2010	5-0	14.1	public.	Tawaii
	20	DU-20A	2016	0-3	760		
	20	DU-20B	2016	3-6	570	Vegetated	
20	20	DU-20A and	2020	3-6	1,640**	area west of DU-8	Wolf Property
20		00200		6+	Refusal		
	21	DU-21A	2016	0-3	5,080	Directly below	
	21	DU-21B	2016	3-6	2,720	bridge south	HDOT ROW
32	21	DU-21B	2020	6-12	3,538*; 7510*	bank.	
	22	DU-22A	2016	0-3	3,830	Wolf Property:	
32	22	DU-22B	2016/2020	3-6	2,870; 13,500*	Area between	
32	22	DU-22B		6-12	7,510*	stream.	Property

2020/2022 DU	2016 DU	Previous Sample ID	Sample Date	Depth (in)	Previous Lead Results (mg/kg)	Current Use Description	Owner
						Potential high use.	
26			2020	0-3	1,320**	Southern bank	
				3+	Refusal	upstream of	Wolf Property
				6-18		DU22	
27			2020	0-3	1,680**	Southern bank	
27				3+	Refusal	Upstream of DU26	Wolf Property
34			2020	0-6	221*	Northern bank: renumbered from DU35 in 2020	HDOT
34			2020	6-12	918*	SAP	
202239			2022	0-6	490	Northern bank: adjacent to bridge downstream	Marian Land
202239			2022	6-12	737		00.
			2022	0.12			
202240			2022	0-6	131	Northern bank: downstream from DU 39	Marian Land Co.
202241			2022	0-6	386	Northern bank: adjacent to ROW	Majority Wolf
202241			2022	6-12	360	upstream	Fioperty
202242a			2022	0-6	99	Northern bank: upstream of 41.	Wolf Property
202242b			2022	0-6	76.8 (arithmetic mean)	Northern bank: upstream of 42A.	Wolf Property
202243			2022	0-6	146	Southern bank: streambank	Wolf Property
202244			2022	0-6	402	Southern bank: across from 43.	Wolf Property
202244			2022	6-12	339		
202245			2022	0-6	83.7 (arithmetic mean)	Southern bank:	Wolf Property

Notes DU9 and DU10 are replicates of DU4. * = 2020 sampling event – February ** = 2020 sampling event - November

This page was intentionally left blank.

Figure 3-1: 2016 and 2020 DU and Sample Results Hakalau

This page was intentionally left blank.

Figure 3-2: 2022 DU and Sample Results

This page was intentionally left blank.

Table 3-2: Hakalau Beach Park Southern Bank Results above 800 mg/kg for Lead

Results above out ingrity for Lead					
	Lead results above HDOH Tier 1 EAL Unrestricted Land Use (200 mg/kg), but below Construction/Trench Worker Scenario (800 mg/kg)				
	Lead results above HDOH Tier 1 EAL above Construction/Trench Worker Scenario (800 mg/kg), but below gross contamination (1,000 mg/kg)				
	Lead results above gross contamination (1,000 mg/kg)				
NA	Not sampled				

2020/2022 DU	20)16 DU	Depth (in)	Previous Lead Results (mg/kg)	Current Use Description	Owner					
HDOT ROW DUs											
		DU-1	0-3	25,000							
		DU-1D	0-3	23,700							
	1	DU-1T	0-3	23,600	Area around the	нрот					
	1	DU-1B	3-6	7,880	bents 4 and 5	TIDOT					
32/33		DU-1B	6-12	3,250*; 3,360*; 2,960*							
		2 110	0.3	10.200							
			3-6	0.480	Between the						
32/33	2	DU-2B	6-12	3,250*; 3,360*; 2,960*	road and stream around bent 6	HDOT					
		DU-7	0-3	2,530	Road on South						
	7	DU-7B	3-6	Refusal	stream bank,	HDOT					
33		DU-7B	6-12	3,538*	and 6.	-					
		DU-11A	0-3	8 820							
	11	DU-11B	3-6	Refusal	Narrow DU	HDOT					
32/33		DU-11B	6-12	3,538*; 7510*	south of DU1						
		DU-21A	0-3	5,080	Directly below						
	21	DU-21B	3-6	2,720	bridge south	HDOT ROW					
32		DU-21B	6-12	3,538*; 7510*	bank.						
	22		0.2	2 020	Wolf Property:						
32			0-3	3,030 2,870: 13,500*	Area between						
32		DU-22B	3-0	2,070, 13,500	driveway and	HDOT/ Wolf Property					
32		DU-22B	6-12	7,510*	stream. Potential high use.						
	PRIVATELY OWNED PARCELS DUS										
		DU-8	0-3	1,850	Vegetated area						
32		DU-8	3-6	13,500*	On southern						
8B	8	DU-8	3-6	2,680**	stream bank	Wolf Property					
32		DU-8	6-12	7,510*	south of the	won'r roperty					
8B			12+	Refusal	access road to park area.						

2020/2022 DU	20	016 DU	Depth (in)	Previous Lead Results (mg/kg)	Current Use Description	Owner		
		DU-12A	0-3	1,410	Crossy area			
	12	DU-23A	0-3	1,040	likely used by	Marian Land		
		DU-24A	0-3	897		Co.		
		DU-20A	0-3	760				
		DU-20B	3-6	570				
	20	DU-20A			Vegetated area	Wolf Property		
20		and	3-6	1,640**	west of DU-8.	won Property		
		DU20B						
20			6+	Refusal				
		DU-22A	0-3	3,830	Wolf Property:			
32		DU-22B	3-6	2,870; 13,500*	Area between	HDOT/ Wolf		
32	22	DU-22B	6-12	7,510*	driveway and stream. Potential high use.	Property		
26			0-3	1,320**	Southern stream			
			3+	Refusal	bank upstream	Wolf Property		
			6-18		of DU22			
27			0-3	1,680**	Southern bank			
27			3+	Refusal	upstream of DU26	Wolf Property		

*DU10 consists of a sample, duplicate, and triplicate. For the purposes of this table, the highest total lead sample result is identified. 2016/2017/2019: Year Sampled

4 Environmental Hazard Evaluations

4.1 Chemicals of Potential Concern

Lead paint was used for decades on the Hakalau Bridge and may have been used on the Hakalau Plantation Flume (destroyed in 1946). Other bridges in the Hamakua Coast have also been identified as sources of lead-based paint which have flaked off and been deposited below the structure on the valley floor.

Initial studies performed at Hakalau Beach Park assessed lead, arsenic, and mercury as chemicals of potential concern (COPC). Sampling identified lead as the chemical of concern (COC). Lead-based paints were used as a corrosion-inhibiting coating on the Hakalau Bridge for decades until removed in 2000.

During previous analyses, lead was found to exceed the HDOH Tier 1 EALs for construction/trench worker direct exposure scenario of 800 mg/kg for lead within multiple DUs (Table 3-2) for a total area of approximately 46,550 sq. ft. Approximately 103,390 sq. ft. were found to be above the HDOH Tier 1 EALs for unrestricted land use (200 mg/kg).

Lead is persistent in the environment and accumulates in soils and sediments through deposition. Once absorbed into the body, lead may be stored for long periods in mineralizing tissue (e.g., teeth, bones, etc.). The stored lead may be released again into the bloodstream, especially in times of calcium stress (e.g., pregnancy, lactation, osteoporosis, etc.) or calcium deficiency.

Depending on the level of exposure, lead can adversely affect the nervous system, kidney function, immune system, reproduction and developmental systems, and the cardiovascular system. Lead exposure also affects the oxygen-carrying capacity of the blood.

The lead effects most commonly encountered in current populations are neurological in children and cardiovascular effects (e.g., high blood pressure, heart disease, etc.) in adults. Infants and young children are especially sensitive to even low levels of lead, which may contribute to behavioral problems, learning deficits, and lowered IQ.

Ecosystems near point sources of lead demonstrate a wide range of adverse effects including losses in biodiversity, changes in community composition, decreased growth and reproductive rates in plants and animals, and neurological effects in vertebrates.

4.2 Exposure Setting

Hakalau Beach Park is a public County of Hawaii Park. However, some portions of private parcels (TMKs) adjacent to the County and HDOT-owned parcels have been used as defacto extensions of the parking area as they are readily accessible to park users but are not owned by the County of Hawaii.

The park was closed in 2017 due to concerns about lead-impacted soil and previously served as a park, fishing area, and general recreation site.

4.3 Potential Human/Ecological Receptors

A conceptual site model (CSM) provides a framework regarding potential sources of contamination, types of contaminants, contaminated media, exposure and migration pathways, and receptors. The CSM (Table 4-1) was used in the preparation of the Remedial Alternatives Analysis (RAA). Based on the results of the document review, the following are identified as potential human receptors:

- On-site construction workers including personnel involved in repair or construction/ trenching during future site activities; and
- On-site landscapers/site workers personnel who may maintain landscaped areas and may mow, weed whack, and perform general site maintenance (trash pickup, re-seeding, shrub trimming).
- General Public/Site Users Including individuals of all ages, who may camp, recreate, or otherwise use the park setting and may potentially dig, touch, drive, lie, or be exposed to lead-impacted soil or dust.
- Ecological Receptors including native and non-native birds, and mammals that may nest, loaf, hunt, or transit across the site (AECOS, 2019).

4.4 Exposure Pathway Analysis

Direct exposure to lead-impacted soil is a potential exposure pathway to human receptors at the site via the following pathways:

- Direct Contact: Incidental ingestion or dermal contact with soil;
- Air: Inhalation of fugitive dust;
- Surface Runoff and Sediment Exposure: Contaminants bourn by water or revealed by erosion; and
- Groundwater Exposure: Contaminants leaching from soil or impacting flowing groundwater.

4.4.1 Direct Contact Pathways

Direct contact with soil may result in incidental oral ingestion and/or dermal absorption of lead. Dermal absorption is not considered a pathway at the site, as lead at the site is not organic. Direct contact exposure may occur for the following groups:

• Construction/Trench Workers and Landscaping/Site Workers: may experience direct contact with lead-impacted soils during trenching, construction, and landscaping activities.

The HDOH construction/trench worker exposure scenarios are set equal to assumptions used in the United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs) (USEPA 2016) for consistency with screening levels for occupational exposure assumptions. The exposure rate reflects projects that may require the same workers returning frequently to the same site

(construction workers in utility trenches). The HDOH TGM uses a total exposure duration of seven years for both carcinogens and noncarcinogens. An exposure frequency of 20 days (4 weeks) per year for 7 years yields a total of 140 days total exposure. Construction workers may receive 140 days (roughly 6 months) of exposure in a single year and never visit the site again. The United States Environmental Protection Agency (EPA) evaluates lead exposure by using blood-lead modeling, such as the Integrated Exposure-Uptake Biokinetic Model which recommends that soil lead levels less than 400 mg/kg are generally safe for residential use (HDOH 2017).

- General Public: The primary concern is that on a regular basis, some people may unintentionally swallow very small amounts of contaminated soil, especially young children who are unaware of the hazards and may be exposed to contaminated soil through normal play activities. Lead enters the body through normal hand-tomouth activity. Also, residual dirt on plants grown in lead-contaminated soil and on hands after digging or outside work may contribute to lead exposure through accidental ingestion of soil particles. Direct contact with lead-impacted soil is a concern as 20% to 70% of ingested lead is absorbed.
- *Ecological Receptors:* Ecological receptors including birds, mammals, and aquatic species may come into contact with the impacted soil through walking, loafing, digging, or directly in sediments.

4.4.2 Air Exposure Pathways

Inhalation of lead dust is another route of exposure, and almost all inhaled lead is absorbed into the body (ATSDR 2005). Lead particles can be absorbed from fugitive dust particles. The generation of fugitive dust may occur through disturbance of affected soil; such as wind or construction activities. Dust particles may be inhaled, may settle on human skin and be ingested (hand to mouth), and/or may settle on vegetation ingested by humans.

Construction/Trench Workers and Landscaping/Site Workers: may inhale fugitive dust during normal construction, landscaping, or maintenance activities. Total lead results in the HDOT ROW exceed 1,000 mg/kg for lead. This level is above the construction/trench worker scenario of 800 mg/kg and only trained personnel familiar with risks associated with exposure to lead should be allowed to conduct activities such as trenching, grading, and drilling operations. If the soil in these areas is disturbed, site workers would potentially require respirators based on air monitoring results.

- *General Public:* may inhale dust while camping, driving, digging (children), sitting/lying, or crawling (children).
- *Ecological receptors:* Ecological receptors including birds, mammals, and aquatic species may come into contact with the dust through walking, loafing, nesting, or digging.

4.4.3 Surface Runoff and Sediment Exposure Pathway

Surface runoff is part of the current conceptual exposure site model. Upstream and ROW DUs along the southern embankment had exceedances of the gross contamination EAL of 1,000 mg/kg. These include the 2016 DU 22 and 2a and the 2020 DU27. Likely, the shoreline itself does not have exceedances as the soils have been scoured. The exposed shoreline area did not have enough soil to sample. In 2016 the shoreline results were below the HDOH Tier 1 EALs of 200 mg/kg.

The stream banks shift during storms. If extensive flooding, scouring, or high waves (tsunami or hurricane) causes extensive erosion of surface soil from the impacted DUs they may migrate to Hakalau Stream. Sediment may accumulate in the adjacent marine environment and be available for contact with various receptors. Recreational users of the marine environment (swimmers, surfers, fishermen) may come into direct contact with sediment and be exposed through oral ingestion and/or dermal absorption. Ecological receptors may live directly in the impacted sediment and may be exposed to COC through feeding within the sediment. As a secondary transport mechanism, COC may bioaccumulate in ecological receptors (i.e., fish, shellfish), then ingested by human receptors.

4.4.4 Groundwater Exposure Pathway

To assess the potential environmental/groundwater leaching pathway, the SPLP analysis was conducted on a soil sample collected from DU32 and DU 33, and the SPLP value was 4.32 mg/L and the method reporting limit (MRL) is 0.03 mg/L (Appendix B).

The SPLP assists in the determination of the mobility of both organic and inorganic analytes present in liquids, solids, and wastes. The results of the SPLP test are used to determine the Desorption Partitioning Coefficient (Kd), which is important to understanding how mobile the lead in the soil is and whether it poses a potential risk to ecological receptors in the vicinity of the park (e.g., vertebrate and invertebrate organisms). EPA Method 1312 SPLP West extraction procedure was used on the Hakalau soil samples from DU32 and DU33. West refers to the pH of the extraction fluid that is made by adding 60/40 weight percent of sulfuric and nitric acids to reagent water until the pH is 5.00 + -0.05 used to determine the leachability of a site that is west of the Mississippi River. This method's pH is higher than the EPA methods extraction fluid for sites east of the Mississippi River (4.20 + -0.05).

The result of the SPLP was inputted in the Batch Test Leaching Model (HDOH, 2007), and used to determine the relative mobility of lead in the soil. The Batch Test Leaching Model uses a combination of SPLP results and the total lead concentration in the sample to calculate a desorption coefficient (Kd). The calculated desorption coefficient is greater than 20 (Kd>20), so the contaminant is considered not significantly mobile and is unlikely to pose a leaching hazard to groundwater. If it was less than 20, then an estimated concentration in groundwater should be calculated and compared to the HDOH Tier 1 EAL The Kd value calculated by this model for the soil sample was 2,500, which is much greater than Kd 20 (Appendix B).

This result demonstrates that the lead present in the soil is strongly bound to the soil and is considered immobile (soil is weathered volcanic alluvial sediments including gravel, sand, and clay). Thus, there is a low likelihood that the lead concentrations in the soil at the park pose a risk to ecological receptors (e.g., aquatic organisms) as a result of lead leaching from the soil into rainwater and sediments or impacting the groundwater as it flows toward the stream and ocean that form the northern and eastern perimeter of the park.

4.5 Environmental Hazard Evaluation Summary

The exposure pathway analysis described in the previous section identifies various exposure pathways (direct and indirect) where lead-impacted soil may pose a risk to human and ecological receptors. The conceptual site exposure model provides a graphical comparison of release mechanism, pathways, and exposure routes to potential current and future receptors at the Site (Table 4-1).

4.5.1 COPC Sources and Release Mechanisms

The primary source of the COPC at Hakalau Beach Park is lead-impacted surface and subsurface soil from lead released into the environment from lead-based paint used in historical bridge maintenance activities.

Lead-impacted soil present at the site has been shown to exist at concentrations above the HDOH Tier EALs for gross contamination (1000 mg/kg). Total concentrations vary across the site and include portions that are at or below HDOH Tier 1 EALs for unrestricted land use. The secondary release mechanism, besides direct contact with soil, includes dust, surface water runoff, and leaching.

4.5.2 Pathways and Exposure Routes

Lead poses a hazard to potential receptors through direct exposure to contaminated media through pathways including surface soil, subsurface soil, ambient air, surface water and sediments, and groundwater. These pathways potentially expose receptors to lead via inhalation, ingestion, or dermal adsorption.

4.5.3 Potential Receptors Current and Future Land Use

The main human exposure scenarios identified under current land use as a County Beach Park are the general public, maintenance workers, and construction works. Since the park's land use is restricted due to its location and ownership, it is not likely to change, and future land use includes these same human exposure scenarios. This is also true for avian and aquatic receptors.

4.5.4 Complete Exposure Pathways

Complete exposure pathways exist for all receptor scenarios exposed to surface and subsurface soil at this site under current and future conditions. Exposure to dust is a complete pathway to on-site maintenance and construction workers when the current grass cover is disturbed and there is potential for inhalation of dust under dry windy conditions when activities such as land mowing and excavation occur.

4.5.5 Potentially Complete Exposure Pathways

Potentially complete pathways to the general public, terrestrial and aquatic ecological receptors exist via direct exposure to fugitive dust if the grass cover was not maintained or a construction excavation project was conducted at the park and dust controls were not implemented correctly. This potential exposure route could be controlled using proper materials management practices and could limit this exposure pathway. Currently, there is no complete pathway to any receptors via surface water runoff, but again, future construction activities could potentially complete this pathway if not conducted with care. Additionally, if there were a natural disaster such as a tsunami that could scour away the

current stream bank and redistribute lead-impacted soils in the current park in valley floor sediment and runoff could be a completed exposure pathway.

4.5.6 Exposure to Lead Leaching

There has not been an identified complete pathway to current and future receptors via leaching in subsurface soil or groundwater. A batch test leachability model based on SPLP analyses from soil collected from the DUs with the highest documented throughout the aggregated sampling events demonstrated that the absorption coefficient is high enough to prevent contaminant mobilization from the soil to groundwater (Appendix B). This is also in part supported by the results of surface water sampling conducted in May of 2022 from a small slow-flowing stream that borders the southern valley escarpment that meanders through and around the most heavily lead-impacted areas. Three surface water DUs were sampled from this stream (DUs 202249, 202250, and 202251, See Figure 3-2) from locations; 1) prior to passing through most impacted areas (DU 202249), 2) at the point which was adjacent to the areas where highest soil concentrations have been identified (DU 202251), and the final point just downstream of the areas of greatest lead concentrations (just before draining into the mouth of Hakalau stream and Hakalau Bay) (DU 202250).

	Primary Release Mechanism	Secondary Sources	Secondary Release Mechanism	Potential F						Receptors				
				Pathway	Exposure Route	Current Land Use				Future Land Use*				
Primary Sources						On-site Landscape or Construction Workers	General Public	Terrestrial Ecological	Aquatic Ecological	On-site Landscape or Construction Workers	General Public/	Terrestrial Ecological	Aquatic Ecological	
Lead Impacted Soil	Lead-Based Paint from Bridge	Lead Impacted Soil	None	Surface Soil	Ingestion	Х	Х	Х	Х	Х	Х	Х	Х	
					Dermal	Х	Х	Х	Х	Х	Х	Х	Х	
			None	Sub-Surface Soil	Ingestion	Х	Х	Х	Х	Х	Х	Х	Х	
					Dermal	Х	Х	Х	Х	Х	Х	Х	Х	
			Dust	Ambient Air	Inhalation	Х	0	0	0	Х	0	0	0	
			Surface Water Su Runoff an	Surface Water	Ingestion	0	0	0	0	0	0	0	0	
				and Sediments	Dermal	0	0	0	0	0	0	0	0	
			Leaching	Subsurface Soil	Ingestion	I	I	Ι	Ι	Ι	Ι	I	I	
					Dermal	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	
				One of the sector	Ingestion	Ι	Ι	Ι	Ι	Ι	Ι	I	I	
				Ground- water Dermal I I			Ι	Ι	Ι	Ι	Ι			
					Inhalation	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	

Table 4-1: Conceptual Site Exposure Model

Notes: X - Complete exposure pathway O – Potentially Complete I - Incomplete * - No significant change to the land use is planned in the near future

5 Establishing Alternatives

Under amended Section 121(d) of CERCLA, remedial actions for hazardous substance cleanup must attain or waive federal environmental potentially applicable or relevant and appropriate requirements (ARARs), or more stringent state environmental ARARs, upon completion of the remedial action (EPA 2019).

ARARs include only federal and state environmental or facility-citing laws/regulations and do not include occupational safety or worker protection requirements. Compliance with OSHA standards is required by 40 C.F.R. 300.150 and therefore the CERCLA requirement for compliance with or waiver of ARARs does not apply to OSHA standards (EPA 2019). In addition to ARARs, non-promulgated criteria, advisories, guidance, or policies referred to as to-be-considered criteria (TBC) information may also apply to the conditions found at a site. Unlike ARARs, identification of and compliance with TBC information is not mandatory or legally binding; however, where TBC information is used as a cleanup level, its use for this purpose should be explained and justified.

See Appendix C for a table for ARARs and TBC criteria for remedial alternatives considered for Hakalau Beach Park. The alternatives evaluated to meet the ARARs and compliance may require consultation with State and Federal Agencies.

5.1 Potential ARARs and TBC Criteria

5.1.1 Potential Chemical-Specific ARARs and TBCs

Chemical-specific ARARs include those environmental laws and regulations that regulate the release to the environment of materials with certain chemical or physical characteristics or that contain specified chemical compounds. These requirements generally set health- or risk-based concentration limits or discharge limits for specific hazardous substances by media. In this instance, the chemical of concern is lead. This contaminant is identified in the EPA RSLs specifically and identified as acceptable for park users at 400 mg/kg in soil. The RSLs are defined as TBCs as they are not promulgated.

5.1.2 Potential Location-Specific ARARs and TBCs

Location-specific ARARs govern activities in certain environmentally sensitive areas. These requirements are triggered by the specific location and the proposed activity at the site. The site is a public park. The EPA RSLs currently allow for 400 mg/kg of total lead at pre-schools and parks. Under the HRS 128D, the HDOH Hazard Evaluation and Emergency Response (HEER) office have provided guidance that recommended a stricter standard of 200 mg/kg for unrestricted land use and active park space. The RSLs and EALs are not promulgated.

The site is also less than 150 meters from the water and within the Coastal Zone Management Special Management Area. It is below the Hawaii-designated underground

injection control line and is not a source of drinking water. It is not located in a designated critical habitat or a designated wetland.

5.1.3 Potential Action-Specific ARARs and TBCs

Action-specific ARARs generally set performance, design, or other similar actionspecified controls or restrictions on particular kinds of response activities. For example, action-specific ARARs may include restrictions that define acceptable treatment and disposal procedures for hazardous substances under 40 CFR Part 261 and 262. The EPA regulatory limit for lead is 5 mg/L. DUs at the site have been identified as exceeding this limit and would be classified as hazardous waste.

DU1, DU11, and DU21 failed TCLP at different depth profiles, (0 to 3-inches bgs), and near-surface soil (3 to 6-inches bgs). It is possible that DU2, which was not tested at the time, could also fail TCLP due to its high total lead concentrations. "In addition, any soil with total lead concentrations somewhere between 1410 mg/kg (DU-12A, TCLP lead of 1.3 mg/L) and 5080 mg/kg (approximate range of total lead concentration 1500 - 5000 mg/kg) may likely have TCLP lead results greater than 5 mg/L, and thus be classified as hazardous waste based on the 2016 results" (KPC 2022).

There are no approved waste disposal sites in Hawaii authorized to accept this waste. This type of waste is sent off island for disposal.

5.2 Remedial Action Objectives

The Remedial Action Objectives for Hakalau as identified by the site owners and as recommended by the state guidance is to remove the direct contact pathway to human receptors (park goers and site workers) and ecological receptors to lead-impacted soil which exceeds concentrations of 200 mg/kg.

5.3 General Response Actions

Actions may include restricting access, fencing, administrative/institutional controls, reducing contact with lead-impacted soil through physical barriers, or removing the source of contamination.
6 Detailed Analysis of Alternatives

The HDOH TGM (Section 16.2.2.2) and the Hawaii State Contingency Plan (SCP) [HAR 11-451-8(c)] (HAR 1995) identify a hierarchy of remedial response actions in this descending order:

- 1. Recycle or reuse
- 2. Destruction or detoxification
- 3. Separation, concentration, or volume reduction
- 4. Immobilization of hazardous substances
- 5. On-site or off-site disposal, isolation, or containment
- 6. Institutional controls or long-term monitoring.

6.1 Alternative 1: Recycle or Reuse

The contaminant of concern is dispersed lead-paint flakes. The lead paint material is not dense enough to be separated from the soil in order to be recycled or reused. This alternative is not suitable to remove the contaminant from the site or reduce potential exposure pathways.

6.2 Alternative 2: Destruction or Detoxification

The lead at the site is also not organic, corrosive, or explosive and is relatively immobile. This alternative is not suitable to remove the contaminant from the site or reduce potential exposure pathways.

6.3 Alternative 3: Separation, concentration, or volume reduction

Under this alternative, contaminated material may be completely or partially separated from material that is not contaminated, or contamination may be reduced in a large volume of material by concentrating the contaminant in a smaller volume. Soil particle size separation is conducted to reduce contaminated soil volume. Soils at Hakalau and lead paint flakes are not suitable for volume reduction in this form and contamination would not be reduced significantly.

6.4 Alternative 4: Immobilization of Hazardous Substances

Portions of the site exceed gross contamination and fail TCLP. The soil in some DUs (approximately 8,390 sq ft) would be classified as hazardous waste if removed for disposal. This soil cannot be disposed of in Hawaii as there are no facilities that are permitted to accept hazardous waste. Reducing bioavailability by stabilizing the lead with a strong buffering agent application was tested to reduce the concentration which could allow for disposal in the state (e.g., through the application of triple superphosphate (TSP) as an amendment to the soil). This would be in conjunction with soil excavation and removal and would not be used for in-situ stabilization. Treated soil would be hauled to RCRA subpart D permitted landfill (e.g., West Hawaii Sanitary Landfill).

TSP is a commercially available soil fertilizer that can also be used to reduce the mobility of lead in the soil. Phosphate is a compound made up of phosphorous (P) and oxygen

(O) and phosphorous atoms that act as an anion that binds readily to lead cations. TSP can also be combined with different ions to impact solubility under acidic conditions. It is most commonly used as fertilizer produced from phosphate rock and phosphoric acid and is technically known as calcium dihydrogen phosphate and as monocalcium phosphate, $[Ca (H_2PO_4)_2.H_2O]$. Treatability studies for in situ lead stabilization that used phosphate-based binders found a significant reduction in the bioavailable lead in soil when it was amended with TSP (Hettiarachchi et al. 2001 and Gene 2008). TSP can also be combined with different ions to impact solubility under acidic conditions. Based on the high concentrations of lead in soil at the Hakalau site, TSP was not considered as a potential in situ stabilization remedial alternative approach. Instead, TSP is evaluated in this alternative and was considered as an amendment to be added to the contaminated soil after it is excavated to reduce the toxicity through immobilization/stabilization of the soil to allow it to be disposed of at an on-island landfill. This is a variation of the scenarios that are evaluated under Alternative 5.

As part of the remedial alternative evaluation, in May of 2022, KPC collected a bulk sample using ISM from the most heavily impacted areas below the bridge on the southern side of the Hakalau stream from DUs 32 and 33 which had been documented in previous investigations as having the highest total lead concentrations in the project area (DUs 32 and 33 were composed of the consolidated DUs 1, 2, 11, and 21). The methodology and results of this treatability study are presented in Appendix E.

The study concluded that TSP was effective at reducing the toxicity of lead in the areas where the highest total lead was present. The total lead concentrations from ISM soil samples collected from DU32 and DU33 were 11,400 mg/kg and had a respective TCLP result of 25.6 mg/l, which is well above the RCRA toxicity characteristic for lead of 5.0 mg/L. However, if TSP is added to an aliquot from this same ISM from DU32 and DU33 at a concentration of just 5% of the total soil mass, the TCLP results were shown to reduce concentrations below the laboratories method reporting limit (or in other words non-detectable dissolved lead). This was achieved without any additional pH buffering additives and demonstrated that immobilization/ stabilization using TSP is highly effective and has ratios that are economically feasible.

As a component of the bench test treatability study in addition to evaluation of the effectiveness of immobilizing lead by adding TSP as an amendment, KPC also evaluated the effectiveness of adding Portland Cement as a way to stabilize the lead. The concept was that if Portland Cement could both buffer the soil to reduce the mobility of the lead and create a material that could consolidate the lead soil as long-term management to reduce disposal costs (e.g., construct an onsite encapsulation cell). Portland Cement was added to the impacted soil at a typical mass ratio for making concrete (1:3). Samples of the soil were weighed, and Portland Cement was mixed with the soil, no other sand or gravel was added and because the soil already had a high moisture content, water was not added to the mix. After the mix was cured, samples were pulverized and submitted to Eurofins for analysis. TCLP analysis on this final material also showed that Portland cement is able to reduce the TCLP result to below the laboratory reporting limit without the addition of TSP Appendix E.

6.5 Alternative 5: On-site or off-site disposal, isolation, or containment

This method offers a good option to prevent the general public from coming into contact with lead-impacted soils. There are three scenarios evaluated in the RAA that are considered effective presumptive remedies for addressing lead-impacted sites by the USEPA. Generally, if lead-impacted soil remains on-site it will be encapsulated and direct exposure to park users is prevented, however, site maintenance workers/construction workers may come into contact with it in the future. An Environmental Hazard Management Plan (EHMP) will need to be maintained and updated when future work activities are planned in areas where encapsulated contaminated soil is present. A project-specific construction EHMP (C-EHMP) will need to be prepared for each future repair and construction activities need to plan for managing lead-impacted soil to be protective of all potentially exposed receptors for the duration of the project. Alternatively, if lead-impacted soil is removed in its entirety from the site as a remedial approach then all potential exposure risk is removed and no EHMP is required for the long term. This alternative presents the remedial alternatives that reduce or remove contamination from direct contact with receptors at the site.

Due to the overlapping rounds of sampling and DUs that have occurred between the period 2016 and 2022, Tables 6-1 and 6-2 identify the total area of the exceedances broken down by landowner, location, and DU.

Stream Side	Owner (Description)	Lead	Area (sq ft)	Perimeter (ft)	DUs	Total (sq ft)	
North	HDOT (ROW)	800+ mg/kg	5885	313	5,6,34		
South	HDOT (ROW Streamside)	800+ mg/kg	5510	331	1,2,7,33, 22 (partial)		
South	HDOT (ROW Roadway)	800+ mg/kg	3026	285	7,32,33,		
South	HDOT (ROW Upslope)	800+ mg/kg	10805	421	1,7,11, 21,32,33		
South	Wolf Property (Streamside)	800+ mg/kg	5219	308	22,27		
South	Wolf Property (Roadway)	800+ mg/kg	1817	248	Not sampled, likely 800 mg/kg +		
South	Wolf Property (Upslope)	800+ mg/kg	10382	404	8,20,26		
South	Marian Land Co (downstream of bridge)	800+ mg/kg	3907	345	12, portion 13		
		Total HDOT Area 800 + mg/kg					
		Total Privately Owned Parcel					
		Total Area 800+ mg/kg					

Table 6-1: HDOT and Privately Owned Parcels which exceed 800 mg/kg
--

Table 6-2: Hawaii County and Privately Owned Parcels which exceed 200 mg/kg and are below 800 mg/kg *

Stream Side	Owner	Lead	Area (sq ft)	Perimeter (ft)	DUs*	Total (sq ft)		
North	Wolf Property (upstream)	200+ mg/kg	5847	310	202241			
North	Marian Land Co (downstreami)	200+ mg/kg	4100	267	202239			
			North Side: Between 200-800 mg/kg					
South	County of Hawaii	200+ mg/kg	36017	875	16, 17,18,37,38	36017		
South	Wolf Property upslope	200+ mg/kg	9035	374	202244	9035		
South	Marian Land Co	200+ mg/kg	1355	161	13	1355		
			Sou	th Side: Betw	een 200-800 mg/kg	46407		
				56354				
*All HDOT	*All HDOT DUs exceed 800 mg/kg							

6.5.1 Alternative 5a: On-site isolation and containment

HDOH and EPA-acceptable mitigation measures include soil encapsulation. During soil encapsulation, DUs that exceed HDOH unrestricted land use EALs (200 mg/kg) for lead would first be covered with orange mirafi (geotextile) or black geotextile material with caution tape laid at intervals to produce a visible barrier between the clean and impacted soils. Visual confirmation will be conducted to ensure that all targeted soil is covered (Figure 6-1, Table 6-3).

• Clean fill would be brought in and overlaid across the impacted site at a depth of either 18 or 24 inches and grass would be maintained to prevent potential exposure. Additional cubic yards of clean soil would also be needed for drainage and grading.

An exposure assessment conducted at nearby Kolekole Beach Park in 2017 for park maintenance workers demonstrated the grass cover on the impacted soil areas effectively prevented a complete exposure pathway while performing maintenance activities (e.g., lawn mowing). The results of this assessment also demonstrated that grass cover was protective of park user exposure scenarios as long as there were restrictions on activities that could render the grass cover ineffective (e.g., digging, driving fence posts, etc.). This may be suitable for the County of Hawaii Park Parcels but may not be adequate for the HDOT ROW due to high COPC levels.

This option leaves the lead-impacted soil on site (including areas of Gross Contamination) and an EHMP would still be needed. Batch Test Leachability analysis demonstrated that lead is immobile and unlikely to affect groundwater and surface water. Workers within the DOT ROW would need respirators when performing maintenance tasks where they are digging/trenching in soil.

		Cubic Yards			
Ownership	Sq Ft	Clean fill 18" Grass Cap	Clean fill (24") Grass Cap		
County of Hawaii 200-800 mg/kg	36017	2001	2667		
HDOT ROW (North) 800+ mg/kg	5885	327	436		
HDOT ROW (South) 800+ mg/kg	19341	1075	1433		
Private Parcels (North) 200 - 800 mg/kg	9947	553	737		
Private Parcels (South) 200 – 800 mg/kg	10390	577	770		
Private Parcels (South) 800+ mg/kg	21325	1185	1580		
Total	102905	5718	7623		

Table 6-3: Alternative 5a: No Removal, Cap Only, Cubic Yards

Annual operation and maintenance costs are not typically high for this alternative; however, the location could be impacted by erosion due to heavy rains and storms. The

hard cap and soil cover option may be undermined during large storms. If this occurs, additional soil or hard cap repairs may be needed. If evidence of erosion impacts the mirafi layer, there is a potential that impacted soil may be spread over areas currently identified as "lower risk" and additional sampling could be required. It is vital that this cap is maintained to protect park users. An annual inspection of this cap will be required per the EHMP and will be documented and submitted to HDOH.

Areas, where this would be impracticable (steep slopes, areas of intense vegetation/trees on the southern embankment), would be fenced and signs would be maintained to restrict access.

6.5.2 Alternative 5b: Removal of all soil that exceeds 200 mg/kg for lead and replacement with clean fill

DUs which pass TCLP and exceed HDOH Tier I unrestricted land use EALs for lead (200 mg/kg) will be excavated (Figure 6-1), hauled to West Hawaii Sanitary Landfill and replaced with clean fill at a design fill depth of 24 inches. DUs in the County of Hawaii parcel meet this standard. Other locations, particularly the DOT ROW area and some private parcels, do not meet this standard and may require disposal off-island (Table 6-4).

Initial costs would be high as soil which is classified as hazardous waste could not be disposed of at facilities in Hawaii. DU1, DU2, DU11, and DU21 failed TCLP at different depth profiles, (0 to 3-inches bgs), and near-surface soil (3 to 6-inches bgs). This is approximately 8,390 sq ft. It is possible that DU2, which was not tested at the time, could also fail TCLP due to its high total lead concentrations. DU2 is approximately 2,444 sq ft but both 0.25-inch depth layers are likely to fail TCLP so at least 0.5 feet would be removed and would require off-island disposal.

DU	Owner	sq. ft	Depth*	CY	Total Lead mg/kg	TCLP
DU-1B	HDOT	5847	3 – 6 inches	54.14	7880	26.2
DU-11	HDOT	1228	0 – 3 inches	11.37	8820	31.8
DU-21	HDOT	1315	0 – 3 inches	12.18	5080	14.2
DU-2A	HDOT	2444	0 – 3 inches	22.63	10200	Fails TCLP*
DU-2B	HDOT	2444	3 – 6 inches	22.63	9480	Fails TCLP*
Total		13258		122.94*		

Table 6-4: DUs which Failed TCLP (2016) and Require Mainland Disposal

Soil Excavation, and Off-Site Disposal of all soil which exceeds the HDOH Tier 1 EAL for unrestricted land use for lead (200 mg/kg) Replace contaminated soil with clean fill.

Note = DUs 2A and 2B are assumed to fail TCCP based on total lead concentrations

* As a conservative measure assume that an entire 0.5 will be removed from each of these DUs total of 246 cubic yards (123 CY x 2=246 CY).

Confirmation sampling will be conducted to ensure that all targeted soil is removed from each DU. All DUs would be excavated in 6-inch lifts until confirmation samples indicated

that soil concentrations were below the HDOH EAL for unrestricted land use (200 mg/kg). Approximately 103,000 sq ft of soil would need to be removed to various depths. For this alternative, we used an estimated depth of 12 inches. The depth may be less on a site-wide average (Table 6-5).

Clean fill would then be brought in and overlaid across the impacted site at a depth of 18-24 inches to relevel the site for use and allow for revegetation, drainage, and grading. Additional cubic yards of clean soil may also be needed for drainage and grading.

An archaeological consultation and monitoring would be required during the excavation. The lead-impacted soil would be removed, therefore an EHMP will not be needed.

Once removal is completed, soil onsite would not require an EHMP. The primary maintenance item would be cutting grass and addressing any erosional issues to the grass cover over the new layer of imported soil.

Ownership	Sq Ft	DU ID	Remove soil (12" estimate) that exceeds 200 mg/kg (CY)	Clean fill 18" (CY)	Clean fill 24" (CY)
County of Hawaii 200-800 mg/kg	36017	16, 17,18,37,38	1334	2001	2667
HDOT ROW (North) 800+ mg/kg	5885	5,6,34	218	327	436
HDOT ROW (South) 800+ mg/kg	19341	1,2,7, 11, 21, 22, 32, 33	716	1075	1433
Private Parcels (North) 200 – 800 mg/kg	9947	202241, 202239	368	553	737
Private Parcels (South) 200 – 800 mg/kg	10390	13, 202244	385	577	770
Private Parcels (South) 800+ mg/kg	21325	8, 12, 13, 22,27, 26	790	1185	1580
Total	102905		3811	5718	7623

Table 6-5: Alternative 5b, Soil Removal 200+ mg/kg, Clean Fill, Cubic yards

This page intentionally left blank.

6.5.3 Alternative 5c: Removal of soil which exceeds 800 mg/kg for lead, containment, and replacement with clean fill. Soil cap for soil which exceeds 200 mg/kg but is below 800 mg/kg.

DUs within the HDOT ROW and privately owned parcel exceed the HDOH EALs for the construction/trench worker exposure for lead (800 mg/kg). This is approximately 46,551 sq ft (Figure 6-2, Table 6-6). Soil from these DUs will be removed. Confirmation sampling will be conducted to ensure that all targeted soil is removed. The soil will be replaced with clean fill at an estimated fill depth of 24 inches.

DUs which exceed the HDOH EALs for unrestricted land use for lead (200 mg/kg) would first be covered with orange mirafi (geotextile) or black geotextile with caution tape laid at intervals to produce a visible barrier between the clean and impacted soils. Clean fill would then be brought in and overlaid across these DUs at a depth of 18- 24 inches and grass will be maintained to prevent potential exposure. Additional cubic yards of clean soil may also be needed for drainage and grading. An EHMP for the remaining lead-impacted soil on site would still be needed.

		Cubic Yards				
Ownership	Sq Ft	Remove soil (12" estimate) that exceeds 800 mg/kg	Clean fill 18"	Clean fill (24")		
County of Hawaii 200-800 mg/kg	36017		2001	2667		
HDOT ROW (North) 800+ mg/kg	5885	218	327	436		
HDOT ROW (South) 800+ mg/kg	19341	716	1075	1433		
Private Parcels (North) 200 – 800 mg/kg	9947		553	737		
Private Parcels (South) 200 – 800 mg/kg	10390		577	770		
Private Parcels (South) 800+ mg/kg	21325	790	1185	1580		
Total	102905	1724	5718	7623		

Table 6-6: Alternative 5c – Soil Removal 800+ mg/kg, Clean Fill Cubic Yards

Archaeological consultation and monitoring would be required during the excavation period (approximately five weeks). A portion of the lead-impacted soil would remain onsite, therefore an EHMP will be needed. Initial costs would be high as soil which is classified as hazardous waste could not be disposed of at facilities in Hawaii and be required to be disposed of in the mainland United States. DU1, DU11, and DU21 failed TCLP at different depth profiles, (0 to 3-inches bgs), and near-surface soil (3 to 6-inches bgs). This is approximately 8,390 sq ft. DU 2 is also likely to fail the TCLP threshold and has been included for removal as lead concentrations in this DU range between 9480 – 10,200 mg/kg. DU2 is approximately 2,444 sq ft. (See Table 6-4).

Annual operation and maintenance costs are not expected to be high for this alternative and would fit in with the park's current budget. An annual inspection of the cap will be required per the EHMP and will be documented and submitted to HDOH. The primary maintenance item would be cutting grass and addressing any erosional issues to the grass cover over the new layer of imported soil.

Figure 6-2: Removal of Soil Over 800 mg/kg, Cap 200 mg/kg

6.6 Institutional Controls or Long-Term Monitoring

This option removes harm to the public but does not remove or reduce the impacts from the site. This option also removes the use value from the site.

6.6.1 Alternatives 6a: No Action

Under the no-action, no remediation activities will be performed. The park will remain closed indefinitely. The costs associated with this alternative were evaluated however, there are likely to be unforeseen costs such as security issues associated with trespassing and other unwanted activity. Based on the concentrations of lead on the Hakalau Valley floor, if left unmitigated, lead-impacted soil poses an unacceptable risk to current and future park users and maintenance workers via a direct pathway to highly contaminated soil media. Lead is persistent in the environment and will not decay in the soil over time. To prevent the public from exposure to areas that are grossly contaminated with lead the county could permanently close Hakalau Park down and restrict public use. Social acceptance of having a popular park permanently inaccessible to the public would be unlikely to be accepted and supported.

This alternative does not meet the needs of the residents of Hawaii nor the County of Hawaii Parks Department and is the lowest-ranked remedial alternative under the HDOH TGM and Hawaii SCP.

6.6.2 Alternatives 6b: Institutional and Engineering Controls

Under the no-action institutional controls alternative, no remediation activities will be performed. The park will would reopen and all areas where lead has been documented to exist in concentrations greater than 200 mg/kg for lead would either be allowed to overgrow with vegetation preventing the public from direct exposure to the soil. A site-specific Environmental Hazard Management Plan (EHMP) would need to be prepared that would outline the areas where various lead concentrations are on the site to facilitate awareness about the risks to current and future maintenance workers. Maintenance (mowing with a mower or line trimmer) would only be conducted where concentrations were below commercial/industrial EALs.

To prevent unintentional exposure a healthy grass cover would be maintained, and any bare soil areas would be seeded and covered with jute netting to prevent direct exposure. Signage warning park users of the hazards and some fencing would be installed to prevent access to the areas where contamination exceeds the HDOH HEER Office EALs for construction/industrial land use (and grossly contaminated areas)(Figure 6-3).

The costs associated with this alternative were not evaluated however, there are likely to be unforeseen costs such as security issues associated with trespassing and other unwanted activity. Periodic inspections of the grass surface for exposed soil areas of erosion would be required and will need to be documented in annual reports. Site workers may be required to wear respirators due to the high levels of lead in some areas. The EHMP would need to be updated periodically and the effectiveness of this alternative would be reviewed every 5 years. This alternative assumes four updates per 30-year period to accommodate park maintenance and use changes.

This alternative may meet the needs of the residents of Hawaii and the County of Hawaii Parks Department however, leaving lead in place on public and private land may not be socially acceptable and the public may reject this remedial alternative under the HDOH TGM and Hawaii SCP.

Figure 6-3: Fencing all areas that exceed 800 mg/kg, soil cap for County of Hawaii Parcels

7 Comparative Analysis of Remedial Alternatives

7.1 Overall Protectiveness

The first three identified alternatives do not meet the overall protectiveness requirements as these alternatives would not remove, limit, or reduce the potential lead exposure pathways for receptors. Alternative 4 could potentially be used in conjunction with other remedial actions to reduce disposal costs.

- Alternative 1: The lead paint material is not dense enough to be separated from the soil in order to be recycled or reused.
- Alternative 2: The lead at the site is also not organic, corrosive, or explosive and is relatively immobile.
- Alternative 3: Soils at Hakalau and lead paint flakes are not suitable for volume reduction in this form and would not be reduced significantly.
- Alternative 4: The Bench Test Treatability study (Appendix E) has demonstrated that immobilization via treatment with TSP to reduce the mobility of lead has been shown to be feasible. This alternative combined with either 5b or 5c to reduce the quantity of lead-impacted soil that would need to be disposed of at mainland US facilities would increase the protectiveness both locally if it able to be treated and accepted for disposal at the WHSL facility. A permit to treat hazardous waste in Hakalau Valley would be required to conduct this alternative. Unfortunately, the uncertainties in the timeline that would be needed to complete the permitting and in obtaining public acceptance of the treatment process make this alternative an unknown. This alternative also has additional costs associated with treatment (industrial machinery for mixing TSP or Portland Cement into the lead-impacted soil, grading, managing stormwater controls on site). The application of this alternative would be in conjunction with soil excavation and removal and would not be used for in-situ stabilization.

Alternatives 5a, 5b, 5c, 6a, and 6b, presented in Table 7-1 and summarized below vary in protectiveness. The following assumptions are made.

- The public obeys signage and restricted areas.
- Site workers (Landscapers) have frequent exposure to surface soil. Site workers primarily handle vegetation and do not excavate below the surface (0 to 3 inches).
- Construction/Trench Workers dig below surface soil (6+ inches bgs) and handle soil.
- Ecological receptors primarily nest, dig, loaf, or lie on the surface of the soil.
- The site remains vegetated, as consistent rainfall in the area typically ensures vegetation growth.
- Construction/Trench Workers and Landscapers do not enter the river/interact with sediment in the water.

Remedial Alternatives for Hakalau include the County of Hawaii parcels and the HDOT ROW. The remedial actions are addressed on a parcel and location basis due to the differences in site use and disparity in total lead results of the remedial actions.

Table 7-1: Alternatives	Analysis	 Protectiveness
-------------------------	----------	------------------------------------

	5a/6. On-site isolation and containment. Soil cap entire site.	5a/6. On-site isolation and containment. Hard cap on areas of 800 mg/kg exceedances	5b. Removal of all soil which exceeds 200 mg/kg for lead and replace with clean fill	5c. Removal of all soil which exceeds 800 mg/kg for lead, containment, and replacement with clean fill.	6a. Institutional and Engineering Controls: Fencing, No Action	6b. Institutional and Engineering Controls: Fencing to Limit Access		
Is Lead-Impacted Soil Still Present?	Yes	Yes	No	Yes	Yes	Yes		
	Does t	he site have a com	Direct plete exposure path	Contact way for the following users under th	e scenario?			
Public	No	Potential (if breached)	No	Potential	No	No		
Construction/ Trench Workers	Potential	Potential	No	No: Lead is below direct exposure for construction/trench worker scenario	Yes	Yes		
Site Workers (Landscapers)	Potential	Potential (if breached)	No	No	Yes	Yes		
Ecological Receptors	Potential	Potential (if breached)	No	Potential: Unlikely	Yes	Yes		
	Does t	he site have a com	Air Ex olete exposure path	posure way for the following users under th	e scenario?			
Public	Potential	No	No	No	Potential	Potential		
Construction/ Trench Workers	Potential	Potential	No	Potential	Yes	Yes		
Site Workers (Landscapers)	Potential	No	No	No	Yes	Yes		
Ecological Receptors	Potential	No	No	No	Yes	Yes		
Surface Water Runoff (Sediment) in River Does the site have a complete exposure pathway for the following users under the scenario?								
Public	Potential	No	No	No	Potential	Potential		
Construction/ Trench Workers	No	No	No	No	No	No		
Site Workers (Landscapers)	Potential	No	No	No	No	No		
Ecological Receptors	Potential	No	No	No	Potential	Potential		

This page intentionally left blank.

7.2 Compliance with ARARs

All of the alternatives shall meet the requirements of the ARARs and will use TBC as guidance (EPA RSLs, HDOH EALs). The actions are compatible with standard excavation and/or earth-moving activities and waste disposal in Hawaii. Depending on the chosen alternative, the site work plan will identify methods to prevent, mitigate, and respond to the conservation of cultural and ecological resources ARARs. ARARs evaluation is presented in Appendix C.

7.3 Reduction of Toxicity, Mobility, and Volume through Treatment

The degree to which the remedial alternative reduces toxicity, mobility, and reduction of volume is achieved, including how the treatment is used to address the COC at the site is presented below (Table 7-2). Factors considered, as appropriate, include the following:

- The number of hazardous substances, pollutants, or contaminants that will be destroyed, treated, or recycled;
- The degree of the expected reduction in toxicity, mobility, or volume of the waste due to treatment; and
- The degree to which the treatment is irreversible.

Alternative 5a - On-site isolation and containment would not remove the volume of contamination, but it would reduce the mobility through a soil cap. This cap is potentially vulnerable to scouring from flooding. The toxicity would not be reduced but the potential for the public and landscapers/site workers to encounter it would be reduced. Treatment under this alternative may not protect against future seismic or climatic events (e.g., tsunami, flooding, or sea-level rise) Table 7-2).

Alternative 5b – Removal of all soil that exceeds 200 mg/kg for lead and replacement with clean fill offers the greatest reduction in toxicity, mobility, and volume as the entire contaminated source will be removed from the site resulting in a volume reduction of 4,057 cubic yards (CY) of lead impacted soil. Treatment under this alternative is permanent.

Alternative 5c - Removal of all soil which exceeds the HDOH Tier 1 EAL for commercial/industrial land use for lead (800 mg/kg), containment, and replacement with clean fill offers a reduction in toxicity. Mobility will be reduced through the soil cap, but the soil cap could be scoured during extensive flooding.

The overall volume of lead-impacted soil would be reduced by 1,970 CY. Treatment under this alternative may not protect against future seismic or climatic events (e.g., tsunami, flooding, or sea-level rise) (Table 7-2).

Alternatives 6a and 6b reduce the potential toxicity for the general public as they no longer will be allowed to access the site or will not be able to access the areas where the concentrations of lead are present. There is no change in toxicity for landscapers/site workers and construction/trench workers who may need to maintain the site or work within

the areas that still have high concentrations of lead. There is no change in mobility or reduction of contaminant volume under these options (Table 7-2).

5a/6. On-site isolation and containment. Grass cap on Park area. Hard cap on areas of 800 mg/kg exceedances.	5b. Removal of all soil which exceeds 200 mg/kg for lead and replacement with clean fill.	5c. Removal of all soil which exceeds 800 mg/kg for lead, containment, and replacement with clean fill.	6a. Institutional and Engineering Controls: Entire Site Restricted, No Action.	6b. Institutional and Engineering Controls: Partial Reopening and Restricted Access to Areas of Highest Contamination.
Toxicity: No change - contaminants are still present for construction/site workers. Impacts are reduced for maintenance crews, the public and ecological receptors.	Toxicity: Eliminated	Toxicity: Reduced.	Toxicity: No Change - contaminants are still present for ecological receptors, maintenance crews and any potential construction/site workers. Reduced for the public.	Toxicity: No Change - contaminants are still present for ecological receptors, maintenance crews and any potential construction/site workers. Reduced for the public.
Mobility: Contaminant is potentially mobile through erosion and surface runoff.	Mobility: Eliminated Contamination is no longer present.	Mobility: Reduced but potentially mobile during extensive erosion.	Mobility: No change - contaminant is potentially mobile through erosion and surface runoff.	Mobility: No change - contaminant is potentially mobile through erosion and surface runoff.
Volume:	Volume:	Volume:	Volume:	Volume:
No reduction in volume of contaminant	Eliminated: all contaminant removed.	Reduced – all soil above 800 mg/kg removed	No reduction in volume of contaminant	No reduction in volume of contaminant

Table 7-2: Reduction of Toxicity, Mobility, and Volume through Treatment Comparison

This page intentionally left blank.

7.4 Long-Term and Short-Term Effectiveness

Alternative 5a: Offers short-term effectiveness. The park reopens without soil removal disposal costs. Site work is still needed in terms of applying mirafi, soil, and revegetation/stabilization of the site. The park is located in an area that can experience torrential rains and associated flooding, increasing the potential for long-term exposure risks. The site will need to be maintained to ensure that the containment soil cap is not breached.

Alternative 5b: Repairs to the site will take longer, and the park will not open as quickly as under scenario 5a. This alternative has long-term effectiveness. Sitework will include scraping soil, disposing of soils (off-island), laying clean soil, and stabilization. All work will be completed, and additional work is not anticipated. The source should be removed from direct contact for all users. An EHMP will not be needed for the affected area of the park under this alternative. Construction and Landscaping crews would not require additional PPE while working in these DUs after soil removal. Other sources of lead may be present in the park, and areas outside of the DUs may need soil testing.

Alternative 5c: Repairs to the site will offer long-term effectiveness. Site work will take as long as alternative 5a but less than 5b and will require additional materials (mirafi). Soil disposal costs and soil disposal work will remain high. Sitework will include scraping soil, disposing of soils (off-island), applying mirafi, laying clean fill, and stabilization. An EHMP will also be required as lead-impacted soil will remain on-site in the parking area. The removal of soils with total lead greater than 800 mg/kg will mean that construction/trench workers will not require additional PPE while working on the site. Lead-impacted soil may be present in the upper steep gulch slopes and could migrate to the park area below.

Institutional controls under 6a and 6b offer short-term effectiveness. The lead-impacted source is removed from public contact, but the material remains and will need to be managed by site workers and potentially by construction/trench workers. Ecological receptors will still access the site and be exposed. The site will need to be protected from erosion and washouts. Surface soil may wash into areas used by the general public and into Hakalau Stream and the Pacific Ocean. EHMPs will be needed, and any site work will need to refer to recommendations in the EHMP.

7.5 Implementability

Alternative 5a is implementable using equipment and supplies from Hawaii County or shipped to Hawaii County. This alternative will require excavators, work crews, clean fill (from Hawaii County), and EHMP document production.

Alternatives 5b and 5c are implementable using equipment and supplies from Hawaii County or shipped to Hawaii County. However, both alternatives require off-island disposal costs and shipping. Immobilization using TSP or Portland Cement could be used to eliminate the need for offsite disposal but the uncertainty in the time need to gain regulatory and public acceptance pose a risk to using this approach. These alternatives will require excavators, work crews, topsoil, and clean fill (from Hawaii County), and alternative 5c will require EHMP document production. The source of the topsoil and

clean fill will need to be documented that the source is free of chemical and biological contamination (e.g., chlordane, little fire ants, etc.).

Alternative 6a will be the easiest to implement. This alternative requires fencing installation and EHMP document production. This alternative will require the County of Hawaii to maintain an EHMP and conduct periodic inspections of the engineering controls (e.g., monthly inspections) reports documenting the results of the inspection (e.g., annual reports).

7.6 Estimated Costs

A complete cost table of the alternatives is found in Appendix D. A summary table is found below in Table 7-3. All alternatives are assumed to have the same costs for the planning component including project management, permitting, and public meeting support. This cost is estimated at \$44,818 and is included in all alternative costs.

For alternatives that consider a soil cap, the thickness of the soil cap can vary from 18 to 24 inches depending on HDOH requirements. This can have an impact on total costs which are summarized in the table below.

Table 7-3: Cost Comparison

	5a. On-site isolation and containment. Grass cap on Park area.	5b. Removal of all soil which exceeds 200 mg/kg for lead and replace with clean fill.	5c. Removal of all soil which exceeds 800 mg/kg for lead, containment, and replace with clean fill. Grass cap on Park area.	6a. Institutional and Engineering Controls: Entire Site Restricted, No Action.	6b. Institutional and Engineering Controls: Partial Reopening and Restricted Access to Areas of Highest Contamination.
Planning Costs	Yes	Yes	Yes	Yes	Yes
EHMP Needed	Yes	No	Yes	Yes	Yes
Soil Removal	No	Yes	Yes	No	No
300 additional CY clean soil for drainage grading.	Yes	Yes	Yes	No	No
Archeological consultation and monitoring	Yes	Yes	Yes	No	No
Mirafi/ Geotextile defined boundary	Yes	No	Yes	No	No
Planning and Permitting	\$44,818	\$44,818	\$44,818	\$44,818	\$44,818
Cost including 24 inches soil cover	\$2,310,386	\$7,585,862	\$5,309,860	\$167,024	\$271,537
Cost including 18 inches soil cover	\$1,775,454	\$3,862,345	\$3,580,956	\$109,176	\$271,537
O&M Cost -30 years	\$120,000	\$0	\$120,00	55,000	55,000

This page intentionally left blank.

The five remedial alternatives are compared the to nine evaluation criteria previously in Section 7 presented qualitatively in a summary comparison in Table 8-1.

			Alternatives				
Evaluation Criteria	5a	5b 5c		6a	6b		
	On-site isolation and containment	Removal of all soil which exceeds 200 mg/kg for lead and replacement with clean fill	Removal of all soil which exceeds 800 mg/kg for lead, containment, and replacement with clean fill	Institutional and Engineering Controls: No Action	Institutional and Engineering Controls: Partial Reopening: Restricted Area		
 Overall protection of human health and the environment. 	0	•	0	0	0		
2. Compliance with applicable or relevant and appropriate requirements.	0	•	0	0	0		
3. Long-term effectiveness and permanence.	\circ	•	0	0	0		
4. Reduction of toxicity, mobility, or volume through treatment.	0	•	0	0	0		
5. Short-term effectiveness.	•	•		•	•		
6. Implementability.	0	0	0	•	•		
7. Cost.	\$2.310M	\$7.585M	\$5.309M	\$0.167M	\$0.271M		
8. State regulator acceptance.	0	•	0	0	0		
9. Community acceptance.	0	•	0	0	0		
 satisfies the criterion to a low degree or does not satisfy the criterion in a timely manner. satisfies criterion to a moderate degree in a timely manner. satisfies criterion to a high degree in a timely manner. satisfies criterion to a high degree – preferred alternative. 							

Table 8-1: Evaluation of Cleanup Alternatives: Hakalau RAA

Alternative 5b fully satisfies 7 out of 9 of the evaluation criteria to a high degree, while alternatives 6a and 6b satisfy only 2 out of 9 evaluation criteria to a high degree, and 5a and 5c only satisfy 1 out of 9 criteria to the highest degree.

While alternative 6b, Institutional and Engineering controls may receive state and community acceptance as an interim action to allow public access to the park under restricted use requirements on an interim basis it did not address overall protection to human health and the environment, long-term effectiveness and permanence, or the reduction of toxicity, mobility, or volume through treatment. The remaining alternatives met the evaluation of regulator and public acceptance criteria either equally or at a lower level than alternative 6b.

Alternatives 5a and 5c, while having price points in the range of alternative 5b, they ranked low relative to alternative 5b at satisfying the other 7 evaluation criteria.

Based on all the evaluation criteria the preferred alternative is 5b: Removal of All Soil that Exceeds 200 mg/kg for Lead and Replacement with Clean Fill. This alternative is recommended because it will achieve substantial risk reduction, removes the source of

contamination, eliminates the need for an EHMP, and removes lead-impacted soil or sediment from becoming exposed during flooding/erosion in the future. This alternative is cost-effective since it offers a permanent reduction of toxicity, mobility, and completely reduces the volume of contamination at the site. It provides the most long-term effectiveness, and the park will not need additional controls. Moreover, the park can be opened for use by the public, site workers, and construction/trench workers with no additional monitoring or maintenance stipulations.

9 References

AECOS. 2019. Avian Habitat Survey Kapue Stream, Hamakua District, Hawaii. Feb.

- County of Hawaii. 2015. Hawaii Statewide GIS Program. Office of Planning. http://planning.hawaii.gov/gis/.
- Giambelluca, T.W., Q. Chen, A.G. Frazier, J.P. Price, Y.-L. Chen, P.-S. Chu, J.K. Eischeid, and D.M. Delparte. 2013. Online Rainfall Atlas of Hawai'i. Bull. Amer. Meteor. Soc. 94, 313-316, doi: 10.1175/BAMS-D-11-00228.1.
- Gene, Fabian. 2008. Treatability Study Report for In SITU lead Immobilization Using Phosphate-Based Binders. U. S. Army Environmental Command Aberdeen Proving Ground.
- Hakalau Home. 2022. 1946 Tsunami. https://www.hakalauhome.com/1946tsunami.html. Accessed August 2022.
- Hettiarachchi GM, Pierzynski GM, Ransom MD. In situ stabilization of soil lead using phosphorus. J Environ Qual. 2001 Jul-Aug;30(4):1214-21. doi:10.2134/jeq2001.3041214x. PMID: 11476498.
- Historic Hawaii. 2022. Hakalau Stream Bridge. https://historichawaii.org/2014/02/14/hakalau-stream-bridge/. Accessed August 2022.
- Hawaii Department of Health (HDOH). 2008. Technical Guidance Manual for the Implementation of the Hawaii State Contingency Plan, State of Hawaii Department of Health Hazard Evaluation and Emergency Response Office, Interim Final-November 12, 2008.
 - ------. 2011. Technical Guidance Manual Notes: Decision Unit and Multi-Increment Sample Investigations. HDOH, Environmental Management Division. March.
- ———. 2012a. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 1: User's Guide, Hawai'i Edition, Fall 2011. Hawaii Department of Health, Environmental Management Division. Fall 2011 (Revised Fall 2017).
- ———. 2012b. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendices 2-9. Fall 2011. Prepared by: Hawaii Department of Health, Environmental Management Division. Fall 2011 (Revised Fall 2017).

- ——. 2012c. EAL Surfer. Prepared by: Hawai'i Department of Health, Hazard Evaluation and Emergency Response. Fall 2011 (Revised Fall 2017).
- . 2022. STATE OF HAWAII WATER QUALITY MONITORING AND ASSESSMENT REPORT: Integrated Report to the U.S. Environmental Protection Agency and the U.S. Congress Pursuant to §303(d) and §305(b), Clean Water Act (P.L. 97-117). Hawaii Department of Health. April 6.
- 2019. Safe Drinking Water Branch. Underground Injection Control. https://health.hawaii.gov/sdwb/underground-injection-control-program/. Accessed October 2019.
- KPC. 2022. Final SAP for Additional Lead Delineation Environmental Site Assessment and Treatability Study Workplan at Hakalau Beach Park. Hakalau HI. February.
- National Oceanic and Atmospheric Administration (NOAA). 2019. Hamakua Coast. Accessed Oct 2019. https://www.ncdc.noaa.gov.
- United States Environmental Protection Agency (US EPA). 1996. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846. 3rd ed. Final Update III. Washington. GPO. November.
 - ———. 2000. Guidance for the Data Quality Objectives Process (EPA QA/G-4). EPA/600/R-96/055. Washington, D.C., August.
 - ——. 2003. Guidance for Obtaining Representative Laboratory Analytical Subsamples from Particulate Laboratory Samples. October 27.

_____. 2019. Applicable or Relevant and Appropriate Requirements (ARARS). https://www.epa.gov/superfund/applicable-or-relevant-and-appropriate-requirementsarars.

United States Geological Survey (USGS). 2019. Papaaloa, HI Quad. HTMC, 1992 ed. USGS Topoviewer Accessed 2022. https://ngmdb.usgs.gov/topoview/viewer/#15/19.8861/-155.1273. This page was intentionally left blank.

APPENDIX A:

LABORATORY ANALYTICAL REPORTS

This page was intentionally left blank.

APPENDIX A-1:

2022 SAMPLING RESULTS SUMMARY TABLES AND LABORATORY ANALYTICAL REPORTS

This page was intentionally left blank.

Table A1 - Analytical Results for Total Lead in Multi-Increment Soil Samples

Hakalau Beach Park

Sample Identifier Sample Date Sample Depth (inches)							HKDU32-0-6- 021720 17-Feb-2020 0-6		HKDU32-6-12- 021720 17-Feb-2020 6-12		HKDU33-6-12- 021820 18-Feb-2020 6-12		HKDU34-0-6- 021920 19-Feb-2020 0-6		HKDU34-6-12- 021920 19-Feb-2020 6-12		HKDU37-6-12- 021920 19-Feb-2020 6-12		HKDU38-6-12- 021920 19-Feb-2020 6-12	
Analyte	Analytical Method	CASRN	Units	Tier 1 EAL >150m ¹	Residential Direct- Exposure Action Levels ²	Construction Worker Direct- Exposure Action Levels	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead	EPA 6010B	7439-92-1	mg/kg	200	200	800	13,500	J	7,510	J	3,250	J	221	J	918	J	368	J	764	J

Notes:

Results shown in bold and highlighted orange equal or exceed the Residential Direct Action Levels

Results shown in bold and highlighted red equal or exceed the Construction Worker Direct-Exposure Action Levels

¹ State of Hawaii Department of Health Tier I Environmental Action Levels (EALs), Groundwater is a Current or Potential Source of Drinking Water (>150 meter to surface water body) presented in Table A-1 of the

² State of Hawaii Department of Health Tier I EALs, Unrestricted Land-Use Scenario presented in Table I-1 of

the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017

³ State of Hawaii Department of Health Tier I EALs, Construction/Trench Worker Exposure Scenario

presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and

CASRN = Chemical Abstracts Service Registry No.

mg/kg= milligram(s) per kilogram

Q = qualifier Data Qualifiers:

U = If the reading was less than the MDL.

J = The reported value was obtained from a reading that was less than the quantitation limit but greater than or equal to the MDL (Method Detection Limit).

Analyte	504		Gammia	Result (mg/kg)	Relative Percent Difference			Otom do and	Relative	95% UCL Calculations				Residential	Construction
	Method	Sample Identification	Туре		Primary and Duplicate	Primary and Triplicate	Mean	Deviation	Standard Deviation	Number of samples	t value	95% UCL	Comment	Exposure Action Levels ¹	Direct-Exposure Action Levels ²
Lead		HKDU33-6-12-021820	Primary	3,250		3%		206.6	6%	3.0	2.9		The data indicates that there is 95% confidence		800
	EPA 6010B	HKDU33-6-12-021820	Duplicate 2,960	2,960	9%		3,190					3538	that the true mean for lead does not exceed	200	
		HKDU33-6-12-021820 Triplicat		3,360									3,538 mg/kg within this Decision Unit		

Table A2 - 95 Percent Upper Confidence Level Calculations for Replicate Sample Detections

Hakalau Gulch Park

Notes:

¹ State of Hawaii Department of Health Tier I EALs, Unrestricted Land-Use Scenario presented in Table I-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

² State of Hawaii Department of Health Tier I EALs, Construction/Trench Worker Exposure Scenario presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

mg/kg Milligrams per kilogram

UCL Upper Confidence Level

% Percent
Table A3 - Analytical Results for Lead TCLP and SPLPHakalau Gulch Park

Sample Sa Sample Dep			e Identifier mple Date th (inches)	HKDU32-0-6 021720 17-Feb-2020 0-6	-	HKDU32-6-12- 021720 17-Feb-2020 6-12		HKDU33-6-12- 021820 18-Feb-2020 6-12		HKDU34-6-12- 021920 19-Feb-2020 6-12		HKDU38-6-12- 021920 19-Feb-2020 6-12		
Analyte	Analytical Method	CASRN	Units	MDL	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TCLP Lead	6010B	7439-92-1	mg/L	0.500	nr	J	nr	-	4.62	J	<0.500	U	nr	-
SPLP Lead	6010B	7439-92-1	mg/L	0.500	<0.500	U	<0.500	U	<0.500	U	<0.500	U	<0.500	U

Notes:

CASRN = Chemical Abstracts Service Registry No.

mg/L= milligram(s) per liter

MDL= Method Detection Limit

nr = not requested (samples were not requested to be analyzed by the lab)

Q = qualifier

Data Qualifiers:

U = If the reading was less than the MDL.

J = The reported value was obtained from a reading that was less than the quantitation

limit but greater than or equal to the MDL (Method Detection Limit).

Table A4 - Analytical Results for Total Lead in Multi-Increment Soil Samples Hakalau Beach Park

Sample Identifier Sample Date Sample Depth (inches)						HKL_DU8B_ 6_2020111 16-Nov-202 3-6	_3- 6 20	HKL_DU12_4- HKL_DU20_3- HKL_DU26_0- 6_20201117 6_20201116 3_20201117 16-Nov-2020 16-Nov-2020 16-Nov-2020 4-6 3-6 0-3		_0- 17 20	HKL_DU27_0- 3_20201116 16-Nov-2020 0-3					
Analyte	Analytical Method	CASRN	Units	Tier 1 EAL >150m ¹	Residential Direct- Exposure Action Levels ²	Construction Worker Direct-Exposure Action Levels ³	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead	EPA 6010B	7439-92-1	mg/kg	200	200	800	2,680	J	738	J	1,640	J	1,320	J	1,680	J

Notes:

Results shown in bold and highlighted orange equal or exceed the Residential Direct Action Levels

Results shown in bold and highlighted red equal or exceed the Construction Worker Direct-Exposure Action Levels

¹ State of Hawaii Department of Health Tier I Environmental Action Levels (EALs), Groundwater is a Current or Potential Source of Drinking Water (>150 meter to surface water body) presented in Table A-² State of Hawaii Department of Health Tier I EALs, Unrestricted Land-Use Scenario presented in Table

I-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall ³ State of Hawaii Department of Health Tier I EALs, Construction/Trench Worker Exposure Scenario presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and

presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and CASRN = Chemical Abstracts Service Registry No. mg/kg= milligram(s) per kilogram

Q = qualifier

Q = qualifier Data Qualifiers:

U = If the reading was less than the MDL.

J = The reported value was obtained from a reading that was less than the quantitation limit but greater than or equal to the MDL (Method Detection Limit).

Calscience

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-21843-2

Client Project/Site: DOT - Hakalau Lead Assessment

For:

EnviroQuest, Inc. 98-029 Hekaha Street Suite 21 Aiea, Hawaii 96701

Attn: Randy Takemoto

TerrThang

Authorized for release by: 3/19/2020 12:00:49 PM

Terri Chang, Project Manager I (714)895-5494 terrichang@eurofinsus.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	12
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

Definitions/Glossary

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

3

Qualifiers

Metals

Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	-
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	•
DER	Duplicate Error Ratio (normalized absolute difference)	ð
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	9
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	_
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 570-21843-2

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-21843-2

Comments

No additional comments.

Receipt

The samples were received on 2/26/2020 9:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 18.5° C.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-57161 and 570-57611 and analytical batch 570-57596 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-57225 and 570-58135 and analytical batch 570-58259 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: EnviroQuest, Inc.
Project/Site: DOT - Hakalau Lead Assessment

Job ID: 570-21843-2

5

Client Sample ID: HI	Lab Sample ID:	570-21843-1			
No Detections.					
Client Sample ID: HI	KDU32-6-12-021720			Lab Sample ID:	570-21843-2
No Detections.					
Client Sample ID: HI	KDU33-6-12-021820C			Lab Sample ID:	570-21843-5
Analyte	Result Qualifier	RL	Unit	Dil Fac D Method	Prep Type
Lead	4.62	0.500	mg/L	16010B	TCLP
Client Sample ID: HI	KDU34-6-12-021920			Lab Sample ID:	570-21843-7
No Detections.					
Client Sample ID: HI	KDU38-6-12-021920			Lab Sample ID:	570-21843-9

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Job ID: 570-21843-2

Method: 6010B - Metals (ICP) - TCLP

Client Sample ID: HKDU33-6-12- Date Collected: 02/18/20 14:00 Date Received: 02/26/20 09:50	021820C					Lab San	nple ID: 570-2 Matrix	1843-5 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.62		0.500	mg/L		03/16/20 14:00	03/17/20 11:57	1
Client Sample ID: HKDU34-6-12	021920					Lab San	nple ID: 570-2	1843-7
Date Collected: 02/19/20 10:30							Matrix	: Solid
Date Received: 02/26/20 09:50								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		03/16/20 14:00	03/17/20 11:54	1

Client Sample Results

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment Job ID: 570-21843-2

Method: 6010B - Metals (ICP) - SPLP West

Client Sample ID: HKDU32-0-6-02 Date Collected: 02/17/20 15:00 Date Received: 02/26/20 09:50	21720					Lab Sam	nple ID: 570-2 Matrix	1843-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		03/18/20 16:00	03/19/20 00:14	1
Client Sample ID: HKDU32-6-12-	021720					Lab Sam	ple ID: 570-2	1843-2
Date Collected: 02/17/20 15:00							Matrix	: Solid
Date Received: 02/26/20 09:50								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		03/18/20 16:00	03/19/20 00:11	1
Client Sample ID: HKDU33-6-12- Date Collected: 02/18/20 14:00 Date Received: 02/26/20 09:50	021820C					Lab San	nple ID: 570-2 Matrix	1843-5 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		03/18/20 16:00	03/19/20 00:17	1
Client Sample ID: HKDU34-6-12- Date Collected: 02/19/20 10:30	021920					Lab Sam	nple ID: 570-2 Matrix	1843-7 :: Solid
Date Received: 02/26/20 09:50	D	0		11	_	B	A	D'I 5
	Result	Qualifier	RL		D	Prepared	Analyzed	
	ND	FI	0.500	mg/L		03/18/20 16:00	03/19/20 00:00	1
Client Sample ID: HKDU38-6-12- Date Collected: 02/19/20 16:30 Date Received: 02/26/20 09:50	021920					Lab Sam	ple ID: 570-2 Matrix	1843-9 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		03/18/20 16:00	03/19/20 00:08	1

5

QC Sample Results

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Job ID: 570-21843-2

Method: 6010B - Metals	(ICP)												
Lab Sample ID: LB 570-5710 Matrix: Solid Analysis Batch: 57596	61/1-C								Cli	ent Sam	ple ID: M Prep Prep I	lethod Type Batch:	Blank : TCLP 57611
		LB LB									•		
Analyte	Re	esult Qu	alifier		RL		Unit		DF	Prepared	Analy	zed	Dil Fac
Lead		ND			0.500		mg/L		03/	16/20 14:0	0 03/16/20	19:55	1
Lab Sample ID: LCS 570-57 Matrix: Solid	161/2-C							Clie	ent Sa	mple ID	: Lab Coi Prep	ntrol S Type	ample : TCLP
Analysis Batch: 57596				Spike		LCS	LCS				Prep E %Rec.	Batch:	57611
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits		
Lead				5.00		4.242		mg/L		85	80 - 120		
Lab Sample ID: LCSD 570-5 Matrix: Solid Analysis Batch: 57596	7161/3-C						C	Client S	ample	e ID: Lab	Control Prep Prep I	Samp Type Batch:	le Dup : TCLP 57611
				Spike		LCSD	LCSD				%Rec.		RPD
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead				5.00		4.372		mg/L		87	80 - 120	3	8 20
Lab Sample ID: 570-23384-E Matrix: Solid	3-1-I MS								C	lient Sa	mple ID: Prep	Matrix Type	Spike TCLP
Analysis Batch. 57590	Sample	Sample		Snike		MS	MS				%Rec	Satch.	5/011
Analyte	Result	Qualifie	r	Added		Result	Qualifier	Unit	D	%Rec	Limits		
Lead	ND	F1		5.00		4.025	F1	mg/L		78	84 - 120		
Lab Sample ID: 570-23384-E Matrix: Solid Analysis Batch: 57596	B-1-J MSD Sample	Sample		Spike		MSD	MSD	Client	Samı	ole ID: M	latrix Spi Prep Prep I %Rec.	ke Du Type Batch:	plicate : TCLP 57611 RPD
Analyte	Result	Qualifie	r	Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	ND	F1		5.00		4.193	F1	mg/L		81	84 - 120	4	7
Lab Sample ID: LB2 570-572 Matrix: Solid Analysis Batch: 58259	225/1-B	LB2 LB	2						Cli	ent Sam P	iple ID: M rep Type Prep I	lethod : SPLI Batch:	Blank P West 58135
Analyte	Re	esult Qu	alifier		RL		Unit		DF	Prepared	Analy	zed	Dil Fac
Lead		ND			0.500		mg/L		_ 03/	18/20 16:0	0 03/18/20	23:36	1
Lab Sample ID: LCS 570-57 Matrix: Solid Analysis Batch: 58259	225/2-B			Sniko			1.05	Clie	ent Sa	imple ID P	: Lab Cor rep Type Prep F	ntrol S : SPLI Batch:	ample P West 58135
Analyte						Result	Qualifier	Unit	п	%Rec	/intec.		
Lead				5.00		4.260	<u></u>	mg/L		85	80 - 120		
_ Lab Sample ID: LCSD 570-5 Matrix: Solid Analysis Batch: 58259	б7225/3-В						C	Client S	ample	e ID: Lab P	Control rep Type Prep I	Samp : SPLI Batch:	le Dup P West 58135
				Spike		LCSD	LCSD				%Rec.		RPD
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead				5.00		4.407		mg/L		88	80 - 120	3	20

QC Sample Results

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Job ID: 570-21843-2

Method: 6010B - Metals (ICP)

Lab Sample ID: 570-21843 Matrix: Solid Analysis Batch: 58259	-7 MS	Sample	Snike	мs	MS	Clien	t Sam	ple ID: P	HKDU34- rep Type: Prep B	6-12-02 SPLP atch: {	21920 West 58135
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	ND	F1	5.00	4.158	F1	mg/L		83	84 - 120		
Lab Sample ID: 570-21843 Matrix: Solid	-7 MSD					Clien	t Sam	ple ID: P	HKDU34- rep Type:	6-12-02 SPLP	21920 West
Analysis Batch: 58259	Sample	Sample	Spike	MSD	MSD				Prep E %Rec.	latch: 8	58135 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	ND	F1	5.00	4.085	F1	mg/L		82	84 - 120	2	7

QC Association Summary

Prep Type

TCLP

TCLP

TCLP

TCLP

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Method

1311

1311

1311

1311

1311

1311

1311

Method 1312

1312

1312

1312

1312

1312

1312

1312

1312

1312

Method

6010B

6010B

6010B

6010B

6010B

Method

3010A

3010A

3010A

3010A

3010A

3010A

3010A

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Client Sample ID

Method Blank

HKDU33-6-12-021820C

HKDU34-6-12-021920

Lab Control Sample

Metals

Leach Batch: 57161

Lab Sample ID

LB 570-57161/1-C

LCS 570-57161/2-C

570-21843-5

570-21843-7

Job ID: 570-21843-2

Prep Batch

8

Prep Batch

Prep Batch

57611

57611

57611

57611

57611

57161

57161

57161

57161

57161

57161

57161

Prep Batch

LCSD 570-57161/3-C	Lab Control Sample Dup	TCLP
570-23384-B-1-I MS	Matrix Spike	TCLP
570-23384-B-1-J MSD	Matrix Spike Duplicate	TCLP
each Batch: 57225		
Lab Sample ID	Client Sample ID	Prep Type
570-21843-1	HKDU32-0-6-021720	SPLP West
570-21843-2	HKDU32-6-12-021720	SPLP West
570-21843-5	HKDU33-6-12-021820C	SPLP West
570-21843-7	HKDU34-6-12-021920	SPLP West
570-21843-9	HKDU38-6-12-021920	SPLP West
LB2 570-57225/1-B	Method Blank	SPLP West
LCS 570-57225/2-B	Lab Control Sample	SPLP West
LCSD 570-57225/3-B	Lab Control Sample Dup	SPLP West
570-21843-7 MS	HKDU34-6-12-021920	SPLP West
570-21843-7 MSD	HKDU34-6-12-021920	SPLP West
nalysis Batch: 5759	6	
Lab Sample ID	Client Sample ID	Prep Type
LB 570-57161/1-C	Method Blank	TCLP
LCS 570-57161/2-C	Lab Control Sample	TCLP
LCSD 570-57161/3-C	Lab Control Sample Dup	TCLP
570-23384-B-1-I MS	Matrix Spike	TCLP
570-23384-B-1-J MSD	Matrix Spike Duplicate	TCLP
Prep Batch: 57611		
Lab Sample ID	Client Sample ID	Prep Type
570-21843-5	HKDU33-6-12-021820C	TCLP
570-21843-7	HKDU34-6-12-021920	TCLP
LB 570-57161/1-C	Method Blank	TCLP
LCS 570-57161/2-C	Lab Control Sample	TCLP
LCSD 570-57161/3-C	Lab Control Sample Dup	TCLP
570-23384-B-1-I MS	Matrix Spike	TCLP

Matrix Spike Duplicate

570-23384-B-1-J MSD Analysis Batch: 57805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-21843-5	HKDU33-6-12-021820C	TCLP	Solid	6010B	57611
570-21843-7	HKDU34-6-12-021920	TCLP	Solid	6010B	57611

TCLP

Prep Batch: 58135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-21843-1	HKDU32-0-6-021720	SPLP West	Solid	3010A	57225
570-21843-2	HKDU32-6-12-021720	SPLP West	Solid	3010A	57225
570-21843-5	HKDU33-6-12-021820C	SPLP West	Solid	3010A	57225
570-21843-7	HKDU34-6-12-021920	SPLP West	Solid	3010A	57225
570-21843-9	HKDU38-6-12-021920	SPLP West	Solid	3010A	57225

QC Association Summary

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Metals (Continued)

Prep Batch: 58135 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB2 570-57225/1-B	Method Blank	SPLP West	Solid	3010A	57225
LCS 570-57225/2-B	Lab Control Sample	SPLP West	Solid	3010A	57225
LCSD 570-57225/3-B	Lab Control Sample Dup	SPLP West	Solid	3010A	57225
570-21843-7 MS	HKDU34-6-12-021920	SPLP West	Solid	3010A	57225
570-21843-7 MSD	HKDU34-6-12-021920	SPLP West	Solid	3010A	57225

Analysis Batch: 58259

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
570-21843-1	HKDU32-0-6-021720	SPLP West	Solid	6010B	58135	
570-21843-2	HKDU32-6-12-021720	SPLP West	Solid	6010B	58135	9
570-21843-5	HKDU33-6-12-021820C	SPLP West	Solid	6010B	58135	
570-21843-7	HKDU34-6-12-021920	SPLP West	Solid	6010B	58135	
570-21843-9	HKDU38-6-12-021920	SPLP West	Solid	6010B	58135	
LB2 570-57225/1-B	Method Blank	SPLP West	Solid	6010B	58135	
LCS 570-57225/2-B	Lab Control Sample	SPLP West	Solid	6010B	58135	
LCSD 570-57225/3-B	Lab Control Sample Dup	SPLP West	Solid	6010B	58135	
570-21843-7 MS	HKDU34-6-12-021920	SPLP West	Solid	6010B	58135	
570-21843-7 MSD	HKDU34-6-12-021920	SPLP West	Solid	6010B	58135	40
						13

Job ID: 570-21843-2

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Client Sample ID: HKDU32-0-6-021720

Job ID: 570-21843-2

Lab Sample ID: 570-21843-1 Matrix: Solid

Date Collected: 02/17/20 15:00 Date Received: 02/26/20 09:50

Pren Tyne	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Δnalvst	lah
SPLP West	Leach	1312			100.08 g	2000 mL	57225	03/13/20 19:00	SUJ5	ECL 3
SPLP West	Prep	3010A			5 mL	50 mL	58135	03/18/20 16:00	SUJ5	ECL 1
SPLP West	Analysis	6010B		1			58259	03/19/20 00:14	ULPF	ECL 1
	Instrumen	t ID: ICP8								

Client Sample ID: HKDU32-6-12-021720 Date Collected: 02/17/20 15:00 Date Received: 02/26/20 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312		·	100.03 g	2000 mL	57225	03/13/20 19:00	SUJ5	ECL 3
SPLP West	Prep	3010A			5 mL	50 mL	58135	03/18/20 16:00	SUJ5	ECL 1
SPLP West	Analysis	6010B		1			58259	03/19/20 00:11	ULPF	ECL 1
	Instrumer	nt ID: ICP8								

Client Sample ID: HKDU33-6-12-021820C Date Collected: 02/18/20 14:00 Date Received: 02/26/20 09:50

—	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			100.11 g	2000 mL	57225	03/13/20 19:00	SUJ5	ECL 3
SPLP West	Prep	3010A			5 mL	50 mL	58135	03/18/20 16:00	SUJ5	ECL 1
SPLP West	Analysis	6010B		1			58259	03/19/20 00:17	ULPF	ECL 1
	Instrumer	t ID: ICP8								
TCLP	Leach	1311			100.04 g	2000 mL	57161	03/13/20 19:00	SUJ5	ECL 3
TCLP	Prep	3010A			5 mL	50 mL	57611	03/16/20 14:00	SUJ5	ECL 1
TCLP	Analysis	6010B		1			57805	03/17/20 11:57	ULPF	ECL 1
	Instrumer	t ID: ICP8								

Client Sample ID: HKDU34-6-12-021920 Date Collected: 02/19/20 10:30

Date Received: 02/26/20 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			100.05 g	2000 mL	57225	03/13/20 19:00	SUJ5	ECL 3
SPLP West	Prep	3010A			5 mL	50 mL	58135	03/18/20 16:00	SUJ5	ECL 1
SPLP West	Analysis	6010B		1			58259	03/19/20 00:00	ULPF	ECL 1
	Instrumen	t ID: ICP8								
TCLP	Leach	1311			99.87 g	2000 mL	57161	03/13/20 19:00	SUJ5	ECL 3
TCLP	Prep	3010A			5 mL	50 mL	57611	03/16/20 14:00	SUJ5	ECL 1
TCLP	Analysis	6010B		1			57805	03/17/20 11:54	ULPF	ECL 1
	Instrumen	t ID: ICP8								

Lab Sample ID: 570-21843-2 Matrix: Solid

Lab Sample ID: 570-21843-5 Matrix: Solid

Lab Sample ID: 570-21843-7 Matrix: Solid

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Job ID: 570-21843-2

Client Sample ID: HKDU38-6-12-021920 Date Collected: 02/19/20 16:30 Date Received: 02/26/20 09:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			100.07 g	2000 mL	57225	03/13/20 19:00	SUJ5	ECL 3
SPLP West	Prep	3010A			5 mL	50 mL	58135	03/18/20 16:00	SUJ5	ECL 1
SPLP West	Analysis	6010B		1			58259	03/19/20 00:08	ULPF	ECL 1
	Instrumer	t ID: ICP8								

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494 ECL 3 = Eurofins Calscience LLC Knott, 11380 Knott Street, Garden Grove, CA 92841, TEL (714)895-5494

Lab Sample ID: 570-21843-9 Matrix: Solid

Accreditation/Certification Summary

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Laboratory: Eurofins Calscience LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	Los Angeles County Sanitation	10109	09-29-20
	Districts		
California	SCAQMD LAP	17LA0919	11-30-20
California	State	2944	09-29-20
Guam	State	20-003R	10-31-20
Nevada	State	CA00111	07-31-20
Oregon	NELAP	CA300001	01-29-21
USDA	US Federal Programs	P330-20-00034	02-10-23
Washington	State	C916-18	10-11-20

Job ID: 570-21843-2

Method Summary

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	ECL 1
1311	TCLP Extraction	SW846	ECL 3
1312	SPLP Extraction	SW846	ECL 3
3010A	Preparation, Total Metals	SW846	ECL 1

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

- ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494
- ECL 3 = Eurofins Calscience LLC Knott, 11380 Knott Street, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: EnviroQuest, Inc. Project/Site: DOT - Hakalau Lead Assessment Job ID: 570-21843-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-21843-1	HKDU32-0-6-021720	Solid	02/17/20 15:00	02/26/20 09:50
570-21843-2	HKDU32-6-12-021720	Solid	02/17/20 15:00	02/26/20 09:50
570-21843-5	HKDU33-6-12-021820C	Solid	02/18/20 14:00	02/26/20 09:50
570-21843-7	HKDU34-6-12-021920	Solid	02/19/20 10:30	02/26/20 09:50
570-21843-9	HKDU38-6-12-021920	Solid	02/19/20 16:30	02/26/20 09:50

-CUSTODY RECORD	TAT (circle one): standard	DATE: <u>2/25</u> PAGE 1 OF 1	ESN PROJECT #D2002210025	LOCATION/PROJECT NAME:DOT - Hakalau Lead Assessment	COLLECTOR: SM DATE COLLECTED: 2/17-2/19	Comments													570-21843 Chain of Currents						LE RECEIPT: LABORATORY NOTES: -# OF CONTAINERS9	SEALS N *Please notify PM immediately with preliminary res ************************************	for TCLP and SPLP.
ESN PACIFIC'S CHAIN-OF-			FAX:		Project Manager: S. Moncrief	570, 20, 610 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	bag X × × 2	bag X * *	bag X *			bag X * *	bag X * * 1	bag X * *	Last entry										RECIEVED BY (Signature) DATE/TIME SAMPL	RECIEVED BY (Signature) DATE/TIME COC SE	
Ш	CLIENT: Kealamahi Pacific Consultants	ADDRESS: 103 South Kalaheo Ave, Kailua, HI 96734	PHONE: 808-286-0222		CLIENT PROJECT #:	Sample	Sample ID# Depth Time Type 1 1 HKDU32-0-6-021720 0-6 1500 MIS It	2 HKDU32-6-12-02172 0-6 1500 MIS t	3 HKDU33-6-12-02182 6-12 1400 MIS I	4 HKDU33-6-12-02182 6-12 1400 MIS I	<u>3 5 HKDU33-6-12-02182/6-12 1400 MIS 1 1 6 HKDU34-0-6-021920 0-6 1030 MIS 1</u>	7 7 HKDU34-6-12-02192 6-12 1030 MIS 1	+ 8 HKDU37-6-12-02192 6-12 1230 MIS 1	9 HKDU38-6-12-02192 6-12 1630 MIS 1		 12	13	14	15	16	17	18	19	20	RELINQUISHED BY: (Signature) DATE/TIME	К RELINQUISHED BY:(Signature) DATE/IME	20

Client: EnviroQuest, Inc.

Login Number: 21843 List Number: 1 Creator: Andujo, Italy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Calscience

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-44279-1

Client Project/Site: Hakalau Beach Park Supplimental Lead Assessment

For:

Kealamahi Pacific Consultants, LLC 103 South Kalaheo Avenue Kailua, Hawaii 96734-2933

Attn: Scott Moncrief

Terrichang

Authorized for release by: 12/7/2020 1:39:51 PM

Terri Chang, Project Manager I (714)895-5494 Terri.Chang@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Review your project results through TOTOLACCESS

LINKS

Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page 1	Í
Table of Contents	2
Definitions/Glossary	3
Case Narrative 4	1
Detection Summary 5	5
Client Sample Results 6	3
QC Sample Results	7
QC Association Summary 8	3
Lab Chronicle)
Certification Summary 1	1
Method Summary 1	2
Sample Summary 1	13
Chain of Custody 1	4
Receipt Checklists 1	5

Definitions/Glossary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Qualifiers

В

Metals	
Qualifie	r

Qualifier Description Compound was found in the blank and sample.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 570-44279-1

Job ID: 570-44279-1

Laboratory: Eurofins Calscience LLC

Client: Kealamahi Pacific Consultants, LLC

Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Narrative

Job Narrative 570-44279-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 11/19/2020 10:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.9° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. No relinquished time listed.

Metals

Method 6010B: The method blank for preparation batch 570-113495 and analytical batch 570-113944 contained Lead above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method 6010B: The following samples were diluted due to the presence of Iron which interferes with Lead: HKL_DU27_0-3_20201116 (570-44279-1), HKL_DU8B_3-6_20201116 (570-44279-2), HKL_DU20_3-6_20201116 (570-44279-3), HKL_DU12_4-6_20201117 (570-44279-4) and HKL_DU26_0-3_20201117 (570-44279-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Kealamahi Pacific Consultants, LLC

Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Assessment						
Client Sample ID: H	KL_DU27_0-3_20201116			Lab Sa	mple ID:	570-44279-1
Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Lead	1680	5.00	mg/Kg	10	6010B	Total/NA
Client Sample ID: H	KL_DU8B_3-6_20201116			Lab Sa	mple ID:	570-44279-2
Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Lead	2680	5.00	mg/Kg	10	6010B	Total/NA
Client Sample ID: H	KL_DU20_3-6_20201116			Lab Sa	mple ID:	570-44279-3
Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	1640	5.00	mg/Kg	10	6010B	Total/NA
Client Sample ID: H	KL_DU12_4-6_20201117			Lab Sa	mple ID:	570-44279-4
Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Lead	738	5.00	mg/Kg	10	6010B	Total/NA
Client Sample ID: H	KL_DU26_0-3_20201117			Lab Sa	mple ID:	570-44279-5
Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Lead	1320 B	5.00	mg/Kg		6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Method: 6010B - Metals (ICP)

Job ID: 570-44279-1

6

Client Sample ID: HKL_DU27_0-3	3_202011	16				Lab San	nple ID: 570-4 Matrix	4279-1
Date Received: 11/19/20 10:00								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1680		5.00	mg/Kg		12/02/20 18:00	12/04/20 10:05	10
Client Sample ID: HKL_DU8B_3-	6_20201 [,]	116				Lab San	nple ID: 570-4	4279-2
Date Collected: 11/16/20 11:00	-						Matrix	: Solid
Date Received: 11/19/20 10:00								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	2680		5.00	mg/Kg		12/02/20 18:00	12/04/20 10:06	10
Client Sample ID: HKL_DU20_3-0	6_202011	16				Lab San	nple ID: 570-4	4279-3
Date Collected: 11/16/20 13:30							Matrix	: Solid
Date Received: 11/19/20 10:00								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1640		5.00	mg/Kg		12/02/20 18:00	12/04/20 10:08	10
Client Sample ID: HKL_DU12_4-0	6_202011	17				Lab San	nple ID: 570-4	4279-4
Date Collected: 11/17/20 08:30	_						Matrix	: Solid
Date Received: 11/19/20 10:00								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	738		5.00	mg/Kg		12/02/20 18:00	12/04/20 10:10	10
Client Sample ID: HKL_DU26_0-3	3_202011	17				Lab San	nple ID: 570-4	4279-5
Date Collected: 11/17/20 10:00							Matrix	: Solid
Date Received: 11/19/20 10:00								

Date Received: 11/19/20 10:00								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1320	В	5.00	mg/Kg		12/02/20 18:00	12/04/20 10:03	10

QC Sample Results

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment Job ID: 570-44279-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-113	491/1-A						С	lier	nt Samp	le ID: Me	thod I	Blank
Matrix: Solid										Prep Typ	e: lot	al/NA
Analysis Batch: 113944										Ргер Ва	tch: 11	3491
	MB	MB					_	_	_			
Analyte	Result	Qualifier		RL	Unit		2	Pre	epared	Analyz	ed l	Dil Fac
Lead	ND		0	.500	mg/K	g	12	2/02	/20 18:00	12/04/20 0	9:34	1
Lab Sample ID: LCS 570-11	3491/2-A					Clie	nt S	am	ple ID:	Lab Con	trol Sa	mple
Matrix: Solid										Prep Typ	e: Tot	al/NA
Analysis Batch: 113944										Prep Ba	tch: 11	3491
			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Lead			25.1	24.66		mg/Kg			98	80 - 120		
Lab Sample ID: LCSD 570-1	13491/3-A				c	lient Sa	mp	le l	D: Lab	Control S	ample	Dup
Matrix: Solid										Prep Typ	e: Tot	al/NA
Analysis Batch: 113944										Prep Ba	tch: 11	3491
			Spike	LCSD	LCSD					%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			24.9	25.00		mg/Kg			100	80 - 120	1	20
Lab Sample ID: MB 570-113	495/1-A						С	lier	nt Samr	ole ID: Me	thod E	Blank
Lab Sample ID: MB 570-113 Matrix: Solid	495/1-A						С	lier	nt Samp	le ID: Me Prep Tyr	thod E	Blank al/NA
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944	495/1-A						С	lieı	nt Samp	le ID: Me Prep Typ Prep Ba	ethod E be: Tot	Blank al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944	3495/1-A MB	МВ					С	lieı	nt Samp	ole ID: Me Prep Typ Prep Ba	ethod E be: Tot tch: 11	Blank al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte	3495/1-A MB Result	MB Qualifier		RL	Unit	I	C	lier	nt Samp	ole ID: Me Prep Typ Prep Ba Analyz	ethod E be: Tot tch: 11	Blank al/NA 13495 Dil Fac
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead	8495/1-A MB 	MB Qualifier	0	RL	Unit mg/K	<u> </u>	$\frac{\mathbf{C}}{12}$	lie: Pre 2/02	nt Samp epared //20 18:00	Prep Typ Prep Ba Prep Ba Analyzo 12/04/20 0	ethod E be: Tot tch: 11 ed	Blank al/NA 13495 Dil Fac 1
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead	MB 	MB Qualifier	0	RL	Unit mg/K	g I	\mathbf{C}	lier Pre	epared /20 18:00	Prep Typ Prep Ba Analyze 12/04/20 C	ethod E be: Tot tch: 11 ed 09:56	Blank al/NA 13495 Dil Fac
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	0	RL	Unit mg/K	g Clie	C 2 12 12 nt S	Pre 2/02	epared //20 18:00	Prep Typ Prep Ba Analyze 12/04/20 C	ethod E be: Tot tch: 11 ed 09:56	Blank al/NA 13495 Dil Fac 1 mple
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11 Matrix: Solid	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	0	RL	Unit mg/K	g Clie	C 2 12 nt S	Pre 2/02	epared /20 18:00	he ID: Me Prep Typ Prep Ba Analyza 12/04/20 C Lab Cont Prep Typ	ethod E be: Tot tch: 11 ed 19:56 trol Sa be: Tot	Blank al/NA 13495 Dil Fac 1 mple al/NA
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	0	RL	Unit mg/K	g Clie	C 7 12 nt S	Pre 2/02	epared /20 18:00	he ID: Me Prep Typ Prep Ba <u>Analyz</u> 12/04/20 C Lab Cont Prep Typ Prep Ba	ethod E be: Tot tch: 11 ed <u>1</u> 99:56 <u>1</u> trol Sa be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 mple al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	0 Spike	RL .505 LCS	LCS	g Clie	C 2 <u>1</u> 2 nt S	Pre 2/02	nt Samp epared /20 18:00 nple ID:	Analyze Prep Ba Analyze 12/04/20 C Lab Com Prep Typ Prep Ba %Rec.	ethod E be: Tot tch: 11 ^{ed} <u>1</u> ^{19:56} trol Sa be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 mple al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 Analyte	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	0 Spike Added	RL 505 LCS Result	LCS Qualifier	g Clier	C D <u>1</u> 2 nt S	Pre 2/02 Sam	epared /20 18:00 hple ID:	Analyze Prep Ba Analyze 12/04/20 C Lab Cont Prep Typ Prep Ba %Rec. Limits	ethod E be: Tot tch: 11 ed 19:56 trol Sa be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 simple al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 Analyte Lead	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	Spike Added 25.0	RL .505 LCS Result 25.23	LCS Qualifier	g Clied Unit mg/Kg	C <u>D</u> <u>1</u> 2 mt S	Pre 2/02 Sam	nt Samp epared /20 18:00 nple ID: %Rec 101 —	Analyze Prep Ba Prep Ba 12/04/20 C Lab Cont Prep Typ Prep Ba %Rec. Limits 80 - 120	ethod E be: Tot tch: 11 ed 199:56 trol Sa be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 ample al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 <u>Analyte</u> Lead Lab Sample ID: LCSD 570-1	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	Spike Added 25.0	RL .505 LCS Result 25.23	LCS Qualifier	g Clien Unit mg/Kg Client Sa	C <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	Pre 2/02 Sam	nt Samp pared /20 18:00 nple ID: <u>%Rec</u> 101 D: Lab	Analyze Prep Ba Analyze 12/04/20 C Lab Cont Prep Typ Prep Ba %Rec. Limits 80 - 120 Control S	ethod E be: Tot tch: 11 ed 9:56 trol Sa be: Tot tch: 11 Sample	Blank al/NA 13495 Dil Fac 1 ample al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 <u>Analyte</u> Lead Lab Sample ID: LCSD 570-1 Matrix: Solid	495/1-A MB Result 0.6430 3495/2-A	MB Qualifier	Spike Added 25.0	RL .505 LCS Result 25.23	LCS Qualifier	g Clien Unit mg/Kg	C 2 12 11 12 12 12 12 12 12 12 12 12 12 12 1	Pre 2/02 Sam	apared /20 18:00 aple ID: %Rec 101 D: Lab	Analyze Prep Typ Prep Ba 12/04/20 C Lab Conf Prep Typ Prep Ba %Rec. Limits 80 - 120 Control S Prep Typ	ethod E be: Tot tch: 11 ed frol Sa be: Tot tch: 11 Gample be: Tot	Blank al/NA 3495 Dil Fac 1 ample al/NA 3495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 Lead Lab Sample ID: LCSD 570-1 Matrix: Solid Analysis Batch: 113944	495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	Spike Added 25.0	RL .505 LCS Result 25.23	LCS Qualifier	g Clied Unit mg/Kg Client Sa	C <u>2</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	Pre 2/02 Sam	apared //20 18:00 aple ID: %Rec 101 D: Lab	Analyze Prep Typ Prep Ba 12/04/20 C Lab Conf Prep Typ Prep Ba %Rec. Limits 80 - 120 Control S Prep Typ Prep Ba	ethod E be: Tot tch: 11 ed 19:56 trol Sa be: Tot tch: 11 Sample be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 ample al/NA 13495
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCSD 570-1 Matrix: Solid Analysis Batch: 113944	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	Spike Added 25.0 Spike	RL .505 LCS Result 25.23	LCS Qualifier	g Clien <u>Unit</u> mg/Kg Client Sa	C <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	Pre 2/02 Sam	nt Samp epared /20 18:00 nple ID: %Rec 101 D: Lab (Analyze Prep Typ Prep Ba Analyze 12/04/20 (C Lab Cont Prep Typ Prep Ba %Rec. Limits 80 - 120 Control S Prep Typ Prep Ba %Rec.	ethod E be: Tot tch: 11 ed <u>1</u> 09:56 <u>1</u> trol Sa be: Tot tch: 11 Sample be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 ample al/NA 13495 e Dup al/NA 13495 RPD
Lab Sample ID: MB 570-113 Matrix: Solid Analysis Batch: 113944 Analyte Lead Lab Sample ID: LCS 570-11 Matrix: Solid Analysis Batch: 113944 Lead Lab Sample ID: LCSD 570-1 Matrix: Solid Analysis Batch: 113944 Analyte	3495/1-A MB <u>Result</u> 0.6430 3495/2-A	MB Qualifier	Spike Added 25.0 Spike Added	RL .505 LCS Result 25.23 LCSD Result	LCS Qualifier Qualifier	g Clien Unit mg/Kg Client Sa Unit	C D T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	Pre 2/02 Sam	nt Samp epared /20 18:00 nple ID: %Rec %Rec	Analyze Prep Typ Prep Ba 12/04/20 (C Lab Comp Prep Typ Prep Ba %Rec. Limits 80 - 120 Control S Prep Typ Prep Ba %Rec. Limits	ethod E be: Tot tch: 11 ed <u>1</u> 09:56 <u>1</u> trol Sa be: Tot tch: 11 Sample be: Tot tch: 11	Blank al/NA 13495 Dil Fac 1 mple al/NA 13495 PDup al/NA 13495 RPD Limit

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Client Sample ID

Client Sample ID

Method Blank

Lab Control Sample

HKL_DU27_0-3_20201116

HKL_DU8B_3-6_20201116

HKL_DU20_3-6_20201116

HKL_DU12_4-6_20201117

HKL_DU26_0-3_20201117

HKL_DU27_0-3_20201116

HKL DU8B 3-6 20201116

HKL_DU20_3-6_20201116

HKL_DU12_4-6_20201117

Lab Control Sample Dup

Prep Batch

Prep Batch

111774

111774

111774

7 8 9 10 11

3050)B		111774
3050)B		
3050)B		
3050)B		

Method

Method

3050B

3050B

3050B

Increment, Prep

Increment, Prep

Increment, Prep

Increment, Prep

Increment, Prep

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-44279-5	HKL_DU26_0-3_20201117	Total/NA	Solid	3050B	111774
MB 570-113495/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-113495/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-113495/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 113944

Metals

Lab Sample ID

570-44279-1

570-44279-2

570-44279-3

570-44279-4

570-44279-5

Lab Sample ID

570-44279-1

570-44279-2

570-44279-3

570-44279-4

MB 570-113491/1-A

LCS 570-113491/2-A

LCSD 570-113491/3-A

Prep Batch: 113495

Prep Batch: 113491

ISM Prep Batch: 111774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-44279-1	HKL_DU27_0-3_20201116	Total/NA	Solid	6010B	113491
570-44279-2	HKL_DU8B_3-6_20201116	Total/NA	Solid	6010B	113491
570-44279-3	HKL_DU20_3-6_20201116	Total/NA	Solid	6010B	113491
570-44279-4	HKL_DU12_4-6_20201117	Total/NA	Solid	6010B	113491
570-44279-5	HKL_DU26_0-3_20201117	Total/NA	Solid	6010B	113495
MB 570-113491/1-A	Method Blank	Total/NA	Solid	6010B	113491
MB 570-113495/1-A	Method Blank	Total/NA	Solid	6010B	113495
LCS 570-113491/2-A	Lab Control Sample	Total/NA	Solid	6010B	113491
LCS 570-113495/2-A	Lab Control Sample	Total/NA	Solid	6010B	113495
LCSD 570-113491/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	113491
LCSD 570-113495/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	113495

Page 9 of 15

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Date Collected: 11/16/20 10:00

Date Received: 11/19/20 10:00

Client Sample ID: HKL_DU27_0-3_20201116

Job ID: 570-44279-1 Lab Sample ID: 570-44279-1 Matrix: Solid

Lab Sample ID: 570-44279-2

Lab Sample ID: 570-44279-3

Lab Sample ID: 570-44279-4

Lab Sample ID: 570-44279-5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					111774	11/19/20 16:00	C4LT	ECL 3
Total/NA	Prep	3050B			10 g	500 mL	113491	12/02/20 18:00	SP7J	ECL 1
Total/NA	Analysis	6010B		10			113944	12/04/20 10:05	ULPF	ECL 1
	Instrumen	it ID: ICP8								

Client Sample ID: HKL DU8B 3-6 20201116 Date Collected: 11/16/20 11:00 Date Received: 11/19/20 10:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					111774	11/19/20 16:00	C4LT	ECL 3
Total/NA	Prep	3050B			10 g	500 mL	113491	12/02/20 18:00	SP7J	ECL 1
Total/NA	Analysis	6010B		10			113944	12/04/20 10:06	ULPF	ECL 1
	Instrumen	t ID: ICP8								

Client Sample ID: HKL_DU20_3-6_20201116 Date Collected: 11/16/20 13:30 Date Received: 11/19/20 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					111774	11/19/20 16:00	C4LT	ECL 3
Total/NA	Prep	3050B			10 g	500 mL	113491	12/02/20 18:00	SP7J	ECL 1
Total/NA	Analysis	6010B		10			113944	12/04/20 10:08	ULPF	ECL 1
	Instrumen	t ID: ICP8								

Client Sample ID: HKL_DU12_4-6_20201117 Date Collected: 11/17/20 08:30 Date Received: 11/19/20 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					111774	11/19/20 16:00	C4LT	ECL 3
Total/NA	Prep	3050B			10 g	500 mL	113491	12/02/20 18:00	SP7J	ECL 1
Total/NA	Analysis	6010B		10			113944	12/04/20 10:10	ULPF	ECL 1
	Instrument	t ID: ICP8								

Client Sample ID: HKL_DU26_0-3_20201117 Date Collected: 11/17/20 10:00 Date Received: 11/19/20 10:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					111774	11/19/20 16:00	C4LT	ECL 3
Total/NA	Prep	3050B			10 g	500 mL	113495	12/02/20 18:00	SP7J	ECL 1
Total/NA	Analysis	6010B		10			113944	12/04/20 10:03	ULPF	ECL 1
	Instrumen	t ID: ICP8								

Eurofins Calscience LLC

9

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494 ECL 3 = Eurofins Calscience LLC Knott, 11380 Knott Street, Garden Grove, CA 92841, TEL (714)895-5494

Accreditation/Certification Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

1 2 3 4 5 6 7 8 9 10 11

Laboratory: Eurofins Calscience LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date				
California	Los Angeles County Sanitation	10109	09-30-21				
	Districts						
California	State	2944	09-30-21				
Nevada	State	CA00111	07-31-21				
Oregon	NELAP	CA300001	01-29-21				
USDA	US Federal Programs	P330-20-00034	02-10-23				
Washington	State	C916-18	10-11-21				

Method Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	ECL 1
3050B	Preparation, Metals	SW846	ECL 1
Increment, Prep	ISM - Dry, Disaggregate, Sieve, Split,	EPA	ECL 3

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494 ECL 3 = Eurofins Calscience LLC Knott, 11380 Knott Street, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Beach Park Supplimental Lead Assessment

12 13 14

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
570-44279-1	HKL_DU27_0-3_20201116	Solid	11/16/20 10:00	11/19/20 10:00	
570-44279-2	HKL_DU8B_3-6_20201116	Solid	11/16/20 11:00	11/19/20 10:00	
570-44279-3	HKL_DU20_3-6_20201116	Solid	11/16/20 13:30	11/19/20 10:00	
570-44279-4	HKL_DU12_4-6_20201117	Solid	11/17/20 08:30	11/19/20 10:00	
570-44279-5	HKL_DU26_0-3_20201117	Solid	11/17/20 10:00	11/19/20 10:00	

44279

ି କର ତେ କର କର୍ଡ୍ଡିକ	eurof	ins	Calscie	nce														DATE:	(СНА	IN C	DF C	:US - 11/18/2		Y R	ECC	RD
7440 Line	coln Way, Garden (Grove, CA 92841	-1427 • (714) 895	-5494		1		_570	0-442	79 Ch	ain of	Custo	idy				-	PAGE:			1		_ OF			1	
LABORA	TORY CLIENT:	EnviroQuest Inc	o.	sales@eurolins	sus.com or cal	lus.				CLIE	NT PRO	JECT N	AME / N	JMBER:	ental Le		essmo				P.O.	NO.:					
ADDRESS: 103 South Kalaheo Ave.						PRO	JECT CO	ONTACT	:						-		SAM	PLER(S)): (PRINT	·)							
CITY: Kailua STATE: ZIP: HI 96734					So	ott Mor	crief									Sco	ott Mor	ncrief, C	Chrisia	n Schne	eider						
TEL:	808 286 0222		E-MAIL:	ottmoncrief8	08@gmai	l.com	-									RE	QUE	STEI	D AN	ALY	'SES		P				
TURNAR	ROUND TIME (Rush su	rcharges may apply t	o any TAT not "STAN	DARD"):		·· · ·				1				Please	check	box or	fill in b	ank as	neede	d.		_			T	<u> </u>	
🗆 SA		24 HR 🛛	48 HR 🛛 7	2 HR 🗆 5	DAYS [STANDA	RD										e l					×		1			
	DELT EDF	GLOBAL ID:					LOG	CO DE:									rra Cor					020/747	g				
SPECIAI	L INSTRUCTIONS:						erved	ved	iltered	(g) 🗆 GRO	(d) 🗆 DRO	I C6-C36 🗆 C6-C44		MTBE [] 8260 []	(8260)	lates (8260)	035) 🗆 En Core 🗆 Te	; (8270)	des (8081)	8082)	0 8270 CI 8270 SIM	tals □ 6010/747X □ 6	0 7196 🗆 7199 🗆 218	p			
LAB USE	SAMPI	EID	SAMP	LING	MATRIX	NO. OF	bres	eser	eld F	H	E	ЧЦ	ا بر ا	Image: A marked black	SCs (cyger	ep (5	ő	sticic	Bs (Hs [ZMe	ĺ.	aLea	Prep	1	
ONLY			DATE	TIME		CONT.	5	ፈ	ιĒ			<u>۲</u>	1	8	<u>></u>	Ô	۲ ۲	NS/	å.	<u> </u>	a d	12	<u>5</u>	Tot	Ī		
	HKL_DU27_0-	3_20201116	11/16/20	10:00	Soil	1							ļ										\square	×	×		
2	HKL_DU8B_3-	6_20201116	11/16/20	11:00	Soil	1										ļ								×	×		
2	HKL_DU20_3-	6_20201116	11/16/20	13:30	Soil	1			ļ	L.													L	×	x		
4	HKL_DU12_4-	6_20201117	11/17/20	8:30	Soil	1								<u> </u>										x	×		
5	HKL_DU26_0-	3_20201117	11/17/20	10:00	Soil	1				<u> </u>						ļ				 			ļ	×	×		
					ļ				<u> </u>						<u> </u>	ļ						<u> </u>	ļ	ļ			
										<u> </u>																	
					ļ				ļ						L	<u> </u>							<u> </u>	L.			
										_																	
					<u> </u>																						
Relinqu Scott Mo	ished by: (Signatu	et				Rec	eived b	y: (Sign	ature/A	Affiliatio	n)									Date:	20			Time	:		
Relinqu	ished by: (Signatu	fan !!	VW	- <u>., </u>		Rec	eived bi	y: (Sign	ature/A	Affiliatio	in)			Ċ	₹					Date:	e: 1/19/202-			Time:			
Relinqu	ished by: (Signatu	re)				Rec	eivedb	ý: (Sign	ature/A	Affiliație	1			_						Date:		/	-	Time			
							.,							_			,										ابسب

5.7/4.9 500

06/02/14 Revision

Login Number: 44279 List Number: 1 Creator: Ramos, Maribel

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to Job Narrative for details.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-44279-1

List Source: Eurofins Calscience

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-97597-2

Client Project/Site: Hakalau Assessment

For:

LINKS

Review your project results through

EOL

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Kealamahi Pacific Consultants, LLC 111 Hekili Street Ste. A601 Kailua, Hawaii 96734

Attn: Scott Moncrief

Terrichang

Authorized for release by: 7/15/2022 3:28:22 PM

Terri Chang, Project Manager I (657)210-6295 Terri.Chang@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.
Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	18

Definitions/Glossary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment Job ID: 570-97597-2

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

Job ID: 570-97597-2

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-97597-2

Comments

No additional comments.

Receipt

The samples were received on 5/26/2022 10:35 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 23.6° C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment Job ID: 570-97597-2

Client Sample ID: DU	39_6-12_20223	Lab Sample ID: 570-97597-10					
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	737		4.00	mg/Kg	5	6010B	Total/NA
Client Sample ID: DU	41_6-12_20224	41			Lab San	nple ID: 5	70-97597-12
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	360		4.00	mg/Kg	5	6010B	Total/NA
Client Sample ID: DU	44_6-12_20224	14			Lab San	nple ID: 5	70-97597-14
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	339		4.00	mg/Kg	5	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment Job ID: 570-97597-2

Method: 6010B - Metals (ICP)

Client Sample ID: DU39_6-12_2 Date Collected: 05/11/22 16:00 Date Received: 05/26/22 10:35	02239					Lab Sam	ple ID: 570-97 Matrix	597-10 : Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	737		4.00	mg/Kg		07/13/22 19:45	07/14/22 14:40	5
Client Sample ID: DU41_6-12_2	02241					Lab Sam	ple ID: 570-97	597-12
Date Collected: 05/12/22 09:40							Matrix	: Solid
Date Received: 05/26/22 10:35								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	360		4.00	mg/Kg		07/13/22 19:45	07/14/22 14:43	5
Client Sample ID: DU44_6-12_2	02244					Lab Sam	ple ID: 570-97	597-14
Date Collected: 05/11/22 13:00							Matrix	: Solid
Date Received: 05/26/22 10:35								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	339		4.00	mg/Kg		07/13/22 19:45	07/14/22 14:45	5

Job ID: 570-97597-2

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-248997/1-/ Matrix: Solid Analysis Batch: 249306	A MB	МВ							Clie	ent Samp	ole ID: Me Prep Typ Prep Bat	thod e: Tot ch: 2	Blank tal/NA 48997
Analyte	Result	Qualifier		RL		Unit		D	P	repared	Analyze	d	Dil Fac
Lead	ND			0.812		mg/k	ζg	_	07/1	3/22 19:45	07/14/22 1	3:57	1
Lab Sample ID: LCS 570-248997/2 Matrix: Solid Analysis Batch: 249306	- A		Spiko			1.05	Clie	ənt	Sar	mple ID:	Lab Cont Prep Typ Prep Bat	rol Sa e: Tot ch: 2	ample tal/NA 48997
Analyte					Result	Qualifier	Unit		п	%Rec	/inits		
Lead			51.0		53.16		mg/Kg			104	80 - 120		
Lab Sample ID: LCSD 570-248997/ Matrix: Solid Analysis Batch: 249306	'3-A					•	Client S	am	ple	ID: Lab	Control S Prep Typ Prep Bat	ampl e: Tot ch: 2	e Dup tal/NA 48997
			Spike		LCSD	LCSD					%Rec		RPD
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			50.8		51.88		mg/Kg		_	102	80 - 120	2	20

Metals

ISM Prep Batch: 246211

Lab Sample ID 570-97597-10	Client Sample ID DU39_6-12_202239	Prep Type Total/NA	Matrix Solid	Method Increment, Prep	Prep Batch
570-97597-12	DU41_6-12_202241	Total/NA	Solid	Increment, Prep	
570-97597-14	DU44_6-12_202244	Total/NA	Solid	Increment, Prep	
Prep Batch: 24899	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-97597-10	DU39_6-12_202239	Total/NA	Solid	3050B	246211

570-97597-10	D039_6-12_202239	IOLAI/INA	50110	3030B	240211
570-97597-12	DU41_6-12_202241	Total/NA	Solid	3050B	246211
570-97597-14	DU44_6-12_202244	Total/NA	Solid	3050B	246211
MB 570-248997/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-248997/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-248997/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 249306

570-97597-12	DU41_6-12_202241	Total/NA	Solid	3050B	246211	8
570-97597-14	DU44_6-12_202244	Total/NA	Solid	3050B	246211	
MB 570-248997/1-A	Method Blank	Total/NA	Solid	3050B		9
LCS 570-248997/2-A	Lab Control Sample	Total/NA	Solid	3050B		
LCSD 570-248997/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B		
Analysis Batch: 2493	806					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
Lab Sample ID 570-97597-10	Client Sample ID DU39_6-12_202239	Prep Type Total/NA	Matrix Solid	6010B	Prep Batch 248997	
Lab Sample ID 570-97597-10 570-97597-12	Client Sample ID DU39_6-12_202239 DU41_6-12_202241	Prep Type Total/NA Total/NA	Matrix Solid Solid	Method 6010B 6010B	Prep Batch 248997 248997	
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244	Prep Type Total/NA Total/NA Total/NA	Matrix Solid Solid Solid	Method 6010B 6010B 6010B	Prep Batch 248997 248997 248997	11
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14 MB 570-248997/1-A	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244 Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid	Method 6010B 6010B 6010B 6010B 6010B	Prep Batch 248997 248997 248997 248997 248997	12 13
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14 MB 570-248997/1-A LCS 570-248997/2-A	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244 Method Blank Lab Control Sample	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid	Method 6010B 6010B 6010B 6010B 6010B 6010B 6010B	Prep Batch 248997 248997 248997 248997 248997 248997	12 13
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14 MB 570-248997/1-A LCS 570-248997/2-A LCSD 570-248997/3-A	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244 Method Blank Lab Control Sample Lab Control Sample Dup	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid	Method 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	Prep Batch 248997 248997 248997 248997 248997 248997 248997	12 13 14

Client Sample ID: DU39_6-12_202239

Job ID: 570-97597-2

Matrix: Solid

Matrix: Solid

Lab Sample ID: 570-97597-10 Matrix: Solid

Lab Sample ID: 570-97597-12

Lab Sample ID: 570-97597-14

Date Collected: 05/11/22 16:00 Date Received: 05/26/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					246211	06/30/22 11:19	KZX6	ECL 4
Total/NA	Prep	3050B			10 g	500 mL	248997	07/13/22 19:45	CS5Z	ECL 4
Total/NA	Analysis	6010B		5			249306	07/14/22 14:40	K1UV	ECL 4
	Instrumen	t ID: ICP10								

Client Sample ID: DU41_6-12_202241 Date Collected: 05/12/22 09:40 Date Received: 05/26/22 10:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					246211	06/30/22 11:19	KZX6	ECL 4
Total/NA	Prep	3050B			10 g	500 mL	248997	07/13/22 19:45	CS5Z	ECL 4
Total/NA	Analysis	6010B		5			249306	07/14/22 14:43	K1UV	ECL 4
	Instrumen	t ID: ICP10								

Client Sample ID: DU44_6-12_202244 Date Collected: 05/11/22 13:00 Date Received: 05/26/22 10:35

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					246211	06/30/22 11:19	KZX6	ECL 4
Total/NA	Prep	3050B			10 g	500 mL	248997	07/13/22 19:45	CS5Z	ECL 4
Total/NA	Analysis	6010B		5			249306	07/14/22 14:45	K1UV	ECL 4
	Instrumen	t ID: ICP10								

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

	Accreditation/C	Certification Summary		1
Client: Kealamahi Pacifi Project/Site: Hakalau As	c Consultants, LLC sessment		Job ID: 570-97597-2	
Laboratory: Eurofin	ns Calscience as listed below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
Oregon	NELAP	4175	01-31-23	5
				6
				8
				9
				1
				1
				1

Method Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	ECL 4
3050B	Preparation, Metals	SW846	ECL 4
Increment, Prep	ISM - Dry, Disaggregate, Sieve, Split,	EPA	ECL 4

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-97597-10	DU39_6-12_202239	Solid	05/11/22 16:00	05/26/22 10:35
570-97597-12	DU41_6-12_202241	Solid	05/12/22 09:40	05/26/22 10:35
570-97597-14	DU44_6-12_202244	Solid	05/11/22 13:00	05/26/22 10:35

بة في ف	eurofins	ĩ	1,									ة 	ち ピ	HAIN	OF C	:UST 05/12	ОDY	REC	ORD	69)
7440 L Eor coi	incoln Way Garden Grove CA 92841 unar service / sample dron off informat	-1427 • (714) 89 tion_contact_us26	15-5494 sales@eumfii			570-97597 0	hain of C	ustody				PA	Щ Ш			Ц В		7		1 1
LABO	SRATORY CLIENT Kealamahi Pac	ific Consultants	', LLC		0n 110		т _С	ENT PROJ	ECT NAME	/ NUMBER.					P O NO					
ADDF	RESS 103 South Kalaheo Ave						- Ř	OJECT CO	NTACT	ŧ.					SAMPLE	ER(S) (PRI	(TNI			
CITY	Kailua			STATE.	HI ZIP	96734-293									KP, K	C, EW,	SM			
TEL.	808-208-8616	E-MAIL. Scott	tmoncrief8	08@gmai	l com						RE	OUES.	LED A	NALY	SES			-		1
TURN	VAROUND TIME (Rush surcharges may app	oly to any TAT not 'S	STANDARD")							Please ch	eck box o	r fill in bla	nk as nee	ded						
	SAME DAY LI 24 HK LL COELT EDF GLOBALID	48 HK		DAYS .		LOG CODE.						га Соге				9				
SPEC	XAL INSTRUCTIONS								ţ			1 Ter				518				
Ple	sase hold DU43_6-12_202243, D J44_6-12_202244	U39_6-12_202	239, DU41_(3-12_20224	÷	рәл) 🗆 СКО 	ОЯО 🗆 (9-C36 🗆 C6-C44		260) 260) 262)	35) 🗆 En Core 🗆	s270) s (8081) s	(280	NIS 0728 🗆 0728			aracia o santa data		
LAB		SAMPL	ING		ON	esei	ьн(⁶	p)Hq		N/X	8) s(09) () eO()8) S{	🗆 sl		C			
USE ONLY	SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	qnU enq	Field T	Τ□	HAT HAT	918		Prel	səq DV2	ЪСЕ	-1∆q	Cr(/	ЧЭЛ			
	DU45_6-12_202245	5/10/2022	1030AM	SOIL	۰-	×											×			
	DU45_6-12_202245B	5/10/2022	2PM	SOIL	۲	×											×			
	DU45_6-12_202245C	5/10/2022	2PM	SOIL	۳-	×											×			
	DU43_0-6_202243	5/10/2022	1145AM	SOIL	٣	×											×			
	DU43_6-12_202243	5/10/2022	1145AM	SOIL	۳	×											×			
	SW49_202249	5/11/2022	10AM	WATER	٢	×											x			
	SW50_202250	5/11/2022	1040AM	WATER	۲	×				,							×			
	SW55_202255	5/11/2022	1105AM	WATER	+	×											×			
	DU39_0-6_202239	5/11/2022	4PM	SOIL	1	×										~~~~	×			
	DU39_6-12_202239	5/11/2022	4PM	SOIL	-	×											×			
Relin KATIE	nquished byr (Signature) : PAGE				Rece	ved by [.] (Signa	ature/Affilia	tion)						Date:			Time			
Relin	nquished by (Signature)				Rece	ived by [,] (Signa	ature/Affilia	tion)						Date			Time			
Relin	nquished by' (Signature)				Rece	ived by [.] (Sign	ature/Affilia	tion)						Date			Time			1
																		06/02/1	4 Revisior	Ę
									1	1		1				Ę	4		2	
									3	2			5			5				

• •	eurofins												1	U	HAIN	I O F	CC	STC
0								/# OM	LAB USE (JNLY			6	ATE:			ö	5/12/2
L		50 NC	4 1) 4										7d	/GE:		2		Ŗ
LABO.	ATORY CLIENT	cific Concultant			call us			CLIEN.	T PROJECT	- NAME / N	UMBER.					PO	Q	
			19 [,] LLC					Tak T	alau Ass	essment								
ADDR	ESS: 400 Court Valation Aug								CT CONTA							CAME	10/02/02	
	I US SOULI I NAIAREO AVE									þ								
CITY				STATE:	ZIF	ó		T								5	2	
	Kailua				ī	96734-	293										י על	τΛ, Ο
TEL.		E-MAIL.																
	808-208-8616	<u>scc</u>	<u>ottmoncrief8</u>	08@gma	ul com							RE	QUES	TED /	ANAL	YSE	ß	
TURN	AROUND TIME (Rush surcharges may ap	ply to any TAT not "	STANDARD")				n F			Å	ase che	ck box or	fill in blar	hk as nee	eded.			
	AME DAY D 24 HR	48 HR	72 HR 🛛	5 DAYS	X STANI	DARD							၀၁	<u> </u>			2/0	
						100 00	DE.						Тепа			V	209 ⊏	9812
SPEC	AL INSTRUCTIONS.					F	╞		C44		0		□ ə			vis	IX7	: 🗆
SEI	E PAGE 1							(1 Ce-		0928	(0	noDi			0728	Þ2/01	6612
						p	p	วชอา	олаа 1 рес			928) :	u3 🗆	(02	(;	3 🗆 02	09 □	. 🗆 96
						əviəs	ved 'iltere	⊐ (6)ŀ	⊐ (p)ŀ		TM \	nates	2032)	, 28) e	, 808)	28 🗆	etals i	112 🗆
LAB		SAMF	PLING	VIDTON	NO	bre	iese	IGT	-19T 그 H	-н	XEX	306) de	00	sBs	eH,	M S	(17)
		DATE	TIME		CONT.	٩U	Pro Fié		미	ЧТ	T8	xo	ЪлЧ	∿s	ЬС	∀Ч	ST	Cu
	DU41_0-6_202241	5/12/2022	0940AM	SOIL	-	×												
	DU41_6-12_202241	5/12/2022	0940AM	SOIL	۲	×												
	DU44_0-6_202244	5/11/2022	1PM	SOIL	-	×												
	DU44_6-12_202244	5/11/2022	1PM	SOIL	٢	×												
							_		+									
									-	\square				_				
							_					-		+				
											_							Τ
Relin	quished by (Signature)				Rec	ceived by' (Signature	/Affiliation	Ê						Dat	¢		
KATIE	PAGE																	
Relin	quished by (Signature)				Rec	ceived by' (Signature	/Affiliation	(Dat	ö		
					_													

۲ () ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	CH AIN OF CUSTO	LY RECORD
744° or May Galden Grove C 2641.1427 714) 895 F For clube Assemble dropp of the and charter and chart	PAGE OF	3
L U⊃VCIE Kealamer Pacific Cons Lants LLC	Makalay Assessment	
103 Sou h Kalaheu e		
c a lua B 2534 253	s Moncrie KP, 13, 6, E	√, 5M
c 208 86 6 E scot = 508Cumail co	REQUESTED / ALYSES	
LAC - N DARD	Pease coxic lark as r	
DOFLEDF GLOBA	3 e	
Picase hold	40] 40]	
0054-sediment_202254 a DU39-6-12-202239	() () () () () () () () () () () () () (P
0.45-6-12-20224515 Samplinc 10.45-6-12-20221.C Samplinc 10.45-6-12-12-12-12 Samplinc 10.45-6-12-12-12 Samplinc 10.45-6-12-12 Samplinc 10.45-72-12 Samplinc 10.45-72-12 <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>paj</td>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	paj
A DU51_Sediment, 20251 05/09/22 3 PM 5221 ment 1		
" DV54-Sediment-20254 05/62/24 9 AM iscd.ment 1		>
V 1 1 100 - 510/20 21/01/20 SHOD-21-3-54-00 /		2
1 DU45.6-12.202450 05/10/22 2 PM 50:1 1 1 V		>
0045-6-12-202456 35/10/22 2PM 321 1 /		2
1 1 1.02 +11/2 20/16/0 2420-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		2
1 DUH3-6-12-2022 43 05/10/20 13/14 50:1 1 1		2
		2
SW50-202250 05/11/22 10 4041 Water 1		>
SWESS- 2022555 05/11/22 11:05 AN Water (V		>
Hero or Signa 6 Tank 200 una	Â#L	
	ψ () ¹ ¹	
	volore man 33. al.	1000
2	2	CF C2 X KE SC1
>	4 5 7 8 9 10 11 12 13 14	

14

United States Department of Association Animal and Plant Health Inspection Service Plant Protection & Ouar infine 4700 River Rond Riverdale MID 20757

Permit to Receive Soil Regulated by 7 CFR 330

11	us permit was generated cle	ctionically via the ePermits sy	stem
PERMITEE NAME	Terri Garcia	PERMITNUMBER	[230-20] (0034
COMPANY	Eurofins Calscience, LLC	APPLICATION NUMBER	P>>> 191121-001
RI CEIVINC ADDRI SS	71101 incoln Way	DATE 18801 D	02 10 20 0
	Guden Grove CA 22811		
MAILING ADDIG 55	71101 uncoln Way		
	Garden Grove CA (2811		
PHONE	(711) 895 5494		
		I XPIRI S	02/10/2623
Doublas AZ Lukeville A Secundo CA Freino CA Si rum nto CA Sin Di -o Hinttord CT New Haven Jacksonville H. Key West Ft. Port Canaveral FL Po Savinnah GU Aguna HI IN Indrinapolis KY Loui Houlton ME Portland MI Portage MN International Northern Mariana Islands Raleigh NC Wilmington NM Sintalere a NV La Rouses Point NY Jamaier Foledo OH Wilmington O Pritisburgh PA Scranton P Warwick/Providence SC O Christia FX Dallas TV De Liceport TX Galveston T Presidio TX Propresso T	4 Nico AZ No iles AZ P Lon, Beach CA, Oakland G a, CA, Surake, CA, Suray DL, Dover, DL, Wahan, tori t H, Miami LL, Mianni (Cu rt Everglades FL, Sanford J, Hilo HL, Honolulu HL, Kah sville, MA, South Boston, M Detroit, ML, Port Huron, M Falls, MN, Minne, upolis, MC, MS, Gullport, MS, Port Bien ND, Dunseith, ND, Lembin, i Veras, NY, Alban, N, M NY, Newbur, H, OH, Astar DK, Oklahoma City, OR, Por PR, Aguadilla, PR, Carolina Charleston, TN, Memphis, FL Li Rio, TA, La Je, Pa, TN, Hurible, TS X, Hidalgo, TX, Humble, TS X, Rio, Grandy, Cuy, TX, Ren	tho rise AZ Surlar AZ Iteo eX Ontare CA Oti Mari C rhe CA eith arthuricia O eith ti Euderdale Hart Ms- rio DHI Ted Ex UPS etc.) H I Tumpi Hawkoni HI Lihue D Baltimore MD Beltsville M I Romalus MT Suit Sunt Mari D Baltimore MD Beltsville M I Romalus MI Suit Sunt Mari D Baltimore MD Beltsville M I Romalus MI Suit Suit Mari D Baltimore MD Beltsville M I Romalus MI Suit Suit Mari D Baltimore MD Beltsville M I Romalus MI Suit Suit Mari O Kusis City MO Station M Ville MI Kern and MI Reoss ND Periol SJ Fritha NMA Earth France MO Station N D Frith SJ Eritha NMA D Frith SJ Eritha NMA D Frither M Neurosci NA PR Lajardo PR May guez PR N Na hville TX Austin TX Bi TP iso TX Fibens TA Filcon v Eredo TX FostIndios TA Fi	on CV (alc ico CA T) v Fert Hueneme CV v Fert Hueneme CV v Fert EO D nyer CI ers FF FF Person F GA Athati GA 2 ID Fastport IF Chicago F Bangor MF Chais MI ic MN Duluth MN Grand IP Commonweith of the alte AFF Sweet (1) S NC Ibuqu reque NM Columbus V Butfalo NY Champ Fan Fund OH Columbus OH sburg, PA Fhilt kelphra PA Ponce RI rownsville TX Corpus TX FortHancock TX than TX Port Arthur TX in CE Salt Like Caty VA
Dulles VA Nortolk ALS	i Croix VESt Hiomas VE	Berlin WA Blune WA Oroy	ille WA Port Arectes WA
Scilic WA Sumie WEO	arcen Bay, WE Milwaal ee		
HAND CARPA	<u> </u>		
l	nder the conditions specified	this perint inflorizes the follow	NID_

Quantity of Soil per Shipment and Treatment Sterilization will interfere with intended use - Your Licility MUST be inspected and approved to receive this soil

SPECIAL INSTRUCTIONS TO INSPECTORS

See permit conditions below

		En 4t Er13-0-20-00034
THIS PERMIT HAS BLEN APPROVED FFECTRONICATELY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VEATPERMITS		DAH
et i pra er		
Gibbs Smith		02/10/2020
	1 150	I I I № Én

1 cl

Login Number: 97597 List Number: 1 Creator: Chang, Terri

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

14

List Source: Eurofins Calscience

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-105614-1

Client Project/Site: Hakalau Lead Assessment

For:

Kealamahi Pacific Consultants, LLC 111 Hekili Street Ste. A601 Kailua, Hawaii 96734

Attn: Scott Moncrief

Authorized for release by: 8/19/2022 12:44:30 PM Lori Thompson, Project Manager I (657)212-3035 Lori.Thompson@et.eurofinsus.com

Designee for

LINKS

Review your project results through

EOL

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Terri Chang, Project Manager I (657)210-6295 Terri.Chang@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	16
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	26

3

Qualifiers

General Chemistry

Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	_
H3	Sample was received and analyzed past holding time.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 570-105614-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-105614-1

Comments

No additional comments.

Receipt

The samples were received on 8/5/2022 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.9° C and 1.2° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method Moisture - 2540: The following samples were received outside of holding time: HAKA_BT_A (570-105614-1), HAKA_BT_AZ (570-105614-2), HAKA_BT_B (570-105614-3), HAKA_BT_C (570-105614-4), HAKA_BT_D (570-105614-5) and HAKA_BT_E (570-105614-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

Client Sample ID: HAKA_	BT_A				Lab Sa	mple ID: 5	70-105614-1	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type	
Lead	10900		8.00	mg/Kg	10	6010B	Total/NA	
Lead	25.6		0.500	mg/L	1	6010B	TCLP	
Lead	4.32		0.0300	mg/L	1	6010B	SPLP West	5
Client Sample ID: HAKA_	BT_AZ				Lab Sa	mple ID: 5	70-105614-2	
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре	
Lead	11400		8.00	mg/Kg	10	6010B	Total/NA	
Lead	22.9		0.500	mg/L	1	6010B	TCLP	8
Client Sample ID: HAKA_	BT_B				Lab Sa	mple ID: 5	70-105614-3	
No Detections.								9
Client Sample ID: HAKA_	BT_C				Lab Sa	mple ID: 5	70-105614-4	
No Detections.								
Client Sample ID: HAKA_	BT_D				Lab Sa	mple ID: 5	70-105614-5	
No Detections.								
Client Sample ID: HAKA_	BT_E				Lab Sa	mple ID: 5	70-105614-6	13
No Detections.								
Client Sample ID: HAKA_	BTPC_A				Lab Sa	mple ID: 5	70-105614-7	
No Detections.								
Client Sample ID: HAKA_	BTPC_B				Lab Sa	mple ID: 5	70-105614-8	
No Detections.								
Client Sample ID: HAKA_	BTPC_C				Lab Sa	mple ID: 5	70-105614-9	
No Detections.								
Client Sample ID: HAKA_	BTPC_D				Lab San	nple ID: 57	0-105614-10	
No Detections.								
Client Sample ID: HAKA_	BTPC_E				Lab San	nple ID: 57	0-105614-11	

No Detections.

This Detection Summary does not include radiochemical test results.

Method: 6010B - Metals (ICP)

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40					Lab Sam	ple ID: 570-10 Matrix	5614-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Lead	10900		8.00	mg/Kg	08/11/22 12:59	08/15/22 16:37	10
Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40					Lab Sam	ple ID: 570-10 Matrix	5614-2 :: Solid
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Lead	11400		8.00	mg/Kg	08/11/22 12:59	08/15/22 16:40	10

Method: 6010B - Metals (ICP) - TCLP

Job ID: 570-105614-1

5

6

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	25.6		0.500	mg/L		08/09/22 20:18	08/10/22 14:26	1
Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-2 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	22.9		0.500	mg/L		08/09/22 20:18	08/10/22 14:28	1
Client Sample ID: HAKA_BT_B Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-3 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:31	1
Client Sample ID: HAKA_BT_C Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40	-	• ""			_	Lab Samp	ole ID: 570-10 Matrix	5614-4 :: Solid
Analyte	Result	Qualifier	RL		D	Prepared	Analyzed	
	ND		0.500	mg/L		06/09/22 20:16	06/10/22 14:55	I
Client Sample ID: HAKA_BT_D Date Collected: 07/28/22 13:50 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-5 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:36	1
Client Sample ID: HAKA_BT_E Date Collected: 07/28/22 13:55 Date Received: 08/05/22 09:40	Decult	Qualifian	DI .	lle it		Lab Samp	ole ID: 570-10 Matrix	5614-6 :: Solid
	ND	Quaimer	0.500			08/00/22 20:18	Analyzeu 08/10/22 14:38	
Client Sample ID: HAKA_BTPC_A Date Collected: 07/28/22 15:25 Date Received: 08/05/22 09:40	ND		0.500	ing/L		Lab Samp	ole ID: 570-10 Matrix	5614-7 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:40	1
Client Sample ID: HAKA_BTPC_B Date Collected: 07/28/22 15:30 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-8 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:43	1
Client Sample ID: HAKA_BTPC_C Date Collected: 07/28/22 15:35 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-9 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:45	1

Job ID: 570-105614-1

Method: 6010B - Metals (ICP) - TCLP

Client Sample ID: HAKA_BTPC_[Date Collected: 07/28/22 15:40 Date Received: 08/05/22 09:40)					Lab Samp	le ID: 570-105 Matrix	614-10 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:48	1
Client Sample ID: HAKA_BTPC_E						Lab Samp	le ID: 570-105	614-11
Date Collected: 07/28/22 15:45							Matrix	: Solid
Date Received: 08/05/22 09:40								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:55	1

5 6

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

Method: 6010B - Metals (ICP) - SPLP West

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30						Lab Sam	ole ID: 570-10 Matrix	5614-1 :: Solid
Date Received: 08/05/22 09:40								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.32		0.0300	mg/L		08/17/22 20:17	08/18/22 14:53	1

Client Sample Results

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22.0	H H3	0.100	<u> </u>		rioparoa	08/09/22 16:00	1
Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-2 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.2	H H3	0.100	%			08/09/22 16:00	1
Client Sample ID: HAKA_BT_B Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-3 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	34.1	H H3	0.100	%		•	08/09/22 16:00	1
Client Sample ID: HAKA_BT_C Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-4 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.3	H H3	0.100	%		•	08/09/22 16:00	1
Client Sample ID: HAKA_BT_D Date Collected: 07/28/22 13:50 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-5 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analvzed	Dil Fac
Percent Moisture	27.6	H H3	0.100	%			08/09/22 16:00	1
Client Sample ID: HAKA_BT_E Date Collected: 07/28/22 13:55 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-6 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	25.0	H H3	0.100	%			08/09/22 16:00	1

Lead

Job ID: 570-105614-1

Lab Sample ID: MB 570-256107/1-A							(Clie	nt Samp	ole ID: M	ethod	Blank
Matrix: Solid										Prep Ty	pe: To	tal/NA
Analysis Batch: 256849										Prep Ba	itch: 2	56107
	MB	MB					_	_			_	
Analyte I	Result	Qualifier	RL		Unit		<u>D</u>	PI	repared	Analyz	ed	Dil Fac
Lead	ND		0.821		mg/K	g		08/1	1/22 12:59	08/15/22	12:42	1
l ab Sample ID: I CS 570-256107/2-A						Cli	ont	Sar		Lah Cor	trol S	amplo
Matrix: Solid							ent	Jai	inpie iD.	Pron Ty	ne To	
Analysis Batch: 256849										Pren Ra	tch: 2	56107
Analysis Baton. 200040			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Lead			49.5	47.79		mg/Kg		—	97	80 - 120		
Lab Sample ID: LCSD 570-256107/3-	A				C	Client S	Sam	ple	ID: Lab	Control	Samp	le Dup
Matrix: Solid										Prep Ty	pe: To	tal/NA
Analysis Batch: 256849										Prep Ba	itch: 2	56107
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			50.5	50.96		mg/Kg			101	80 - 120	6	20
Lab Sample ID: LB 570-255340/1-B Matrix: Solid							(Clie	nt Samp	ole ID: M Prep	ethod Type:	Blank TCLP
Analysis Batch: 255866										Prep Ba	tch: 2	55638
	LB	LB										
Analyte I	Result	Qualifier	RL		Unit		D	Pi	repared	Analyz	ed	Dil Fac
Lead	ND		0.500		mg/L			08/0	9/22 20:18	08/10/22	13:57	1
Lab Sample ID: LCS 570-255340/2-B Matrix: Solid Analysis Batch: 255866						Cli	ent	Sar	nple ID:	Lab Cor Prep Prep Ba	itrol S Type: itch: 2	ample TCLP 55638
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Lead			2.00	2.255		mg/L		_	113	80 - 120		
Lab Sample ID: LCSD 570-255340/3- Matrix: Solid Analysis Batch: 255866	в				C	Client S	Sam	ple	ID: Lab	Control : Prep Prep Ba	Sampl Type: itch: 2	e Dup TCLP
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lood			2.00	2.010		mg/L		_	101	80 - 120	11	20
Leau								Clie	nt Sam		ethod	Blank
Leau Lab Sample ID: MB 580-400071/21-E Matrix: Solid	5								Pr	ep Type	SPL	P West
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081	MD	мв							Pr	ep Type Prep Ba	SPLF	P West 00945
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081	MB	MB	Ы		Unit		п	D	Pr	ep Type: Prep Ba	SPLF	P West 00945
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081	MB Result	MB Qualifier	RL	·	Unit		<u>D</u>	P i	Pr repared	ep Type Prep Ba Analyz	: SPLF atch: 4	P West 00945 Dil Fac
Lead Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081 Analyte Lead Lead Lab Sample ID: LCS 580-400071/22- Matrix: Solid Analysis Patrix: 401021	MB Result ND	MB Qualifier	RL 0.0300		<mark>Unit</mark> mg/L	Cli	D ent	P ı 08/1 Sar	Pr repared 7/22 20:17 nple ID: Pr	ep Type: Prep Ba Analyz 08/18/22 Lab Con ep Type:	ed 13:12 trol S SPLF	Dil Fac 1 ample 2 West
Lead Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081 Analyte Lead Lab Sample ID: LCS 580-400071/22- Matrix: Solid Analysis Batch: 401081	MB Result ND	MB Qualifier			Unit mg/L	Cli	D ent	Pi 08/1 <mark>Sar</mark>	Pr repared 7/22 20:17 mple ID: Pr	ep Type: Prep Ba <u>Analyz</u> 08/18/22 Lab Cor ep Type: Prep Ba	SPLF atch: 4 2ed 13:12 atrol S SPLF atch: 4	P West 00945 Dil Fac 1 ample P West 00945
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081 Analyte E Lead Lab Sample ID: LCS 580-400071/22- Matrix: Solid Analysis Batch: 401081	MB Result ND	MB Qualifier	RL 0.0300 Spike Added	LCS Basulf	LCS	Cli	D ent	Pi 08/1 Sar	Pr repared 7/22 20:17 nple ID: Pr	Analyz 08/18/22 Lab Correp Type: Prep Ba %Rec	red 13:12 trol S SPLF spLF tch: 4	P West 00945 Dil Fac 1 ample P West 00945

Eurofins Calscience

1.035

mg/L

104

80 - 120

1.00

Method: 6010B - Metals (ICP)

Lab Sample ID: LCSD 580-400071/23-B Matrix: Solid			C	Client S	ample	ID: Lat F	o Control	Sample : SPLP	e Dup West
Analysis Batch: 401081							Prep Ba	atch: 40	00945
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	1.00	1.051		mg/L		105	80 - 120	2	20

Prep Type

TCLP

Matrix

Solid

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

Client Sample ID

HAKA_BT_A

HAKA_BT_B

HAKA_BT_C

HAKA_BT_D

HAKA_BT_E

HAKA_BTPC_A

HAKA_BTPC_B

HAKA BTPC C

HAKA_BTPC_D

HAKA BTPC E

Lab Control Sample

Lab Control Sample Dup

Method Blank

HAKA BT AZ

Metals

Leach Batch: 255340

Lab Sample ID

570-105614-1

570-105614-2

570-105614-3

570-105614-4

570-105614-5

570-105614-6

570-105614-7

570-105614-8

570-105614-9

570-105614-10

570-105614-11

LB 570-255340/1-B

LCS 570-255340/2-B

LCSD 570-255340/3-B

Prep Batch: 255638

Job ID: 570-105614-1

Prep Batch

Method

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

9 10 11 12 13

8

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	TCLP	Solid	3010A	255340
570-105614-2	HAKA_BT_AZ	TCLP	Solid	3010A	255340
570-105614-3	HAKA_BT_B	TCLP	Solid	3010A	255340
570-105614-4	HAKA_BT_C	TCLP	Solid	3010A	255340
570-105614-5	HAKA_BT_D	TCLP	Solid	3010A	255340
570-105614-6	HAKA_BT_E	TCLP	Solid	3010A	255340
570-105614-7	HAKA_BTPC_A	TCLP	Solid	3010A	255340
570-105614-8	HAKA_BTPC_B	TCLP	Solid	3010A	255340
570-105614-9	HAKA_BTPC_C	TCLP	Solid	3010A	255340
570-105614-10	HAKA_BTPC_D	TCLP	Solid	3010A	255340
570-105614-11	HAKA_BTPC_E	TCLP	Solid	3010A	255340
LB 570-255340/1-B	Method Blank	TCLP	Solid	3010A	255340
LCS 570-255340/2-B	Lab Control Sample	TCLP	Solid	3010A	255340
LCSD 570-255340/3-B	Lab Control Sample Dup	TCLP	Solid	3010A	255340

Analysis Batch: 255866

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	TCLP	Solid	6010B	255638
570-105614-2	HAKA_BT_AZ	TCLP	Solid	6010B	255638
570-105614-3	HAKA_BT_B	TCLP	Solid	6010B	255638
570-105614-4	HAKA_BT_C	TCLP	Solid	6010B	255638
570-105614-5	HAKA_BT_D	TCLP	Solid	6010B	255638
570-105614-6	HAKA_BT_E	TCLP	Solid	6010B	255638
570-105614-7	HAKA_BTPC_A	TCLP	Solid	6010B	255638
570-105614-8	HAKA_BTPC_B	TCLP	Solid	6010B	255638
570-105614-9	HAKA_BTPC_C	TCLP	Solid	6010B	255638
570-105614-10	HAKA_BTPC_D	TCLP	Solid	6010B	255638
570-105614-11	HAKA_BTPC_E	TCLP	Solid	6010B	255638
LB 570-255340/1-B	Method Blank	TCLP	Solid	6010B	255638
LCS 570-255340/2-B	Lab Control Sample	TCLP	Solid	6010B	255638
LCSD 570-255340/3-B	Lab Control Sample Dup	TCLP	Solid	6010B	255638

Metals	

ISM Prep Batch: 255881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	Increment, Pre	0
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	Increment, Pre	o
Prep Batch: 256107					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	3050B	255881
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	3050B	255881
MB 570-256107/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-256107/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-256107/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
Analysis Batch: 2568	49				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	6010B	256107
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	6010B	256107
MB 570-256107/1-A	Method Blank	Total/NA	Solid	6010B	256107
LCS 570-256107/2-A	Lab Control Sample	Total/NA	Solid	6010B	256107
LCSD 570-256107/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	256107
_each Batch: 400071					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	SPLP West	Solid	1312	
MB 580-400071/21-B	Method Blank	SPLP West	Solid	1312	
LCS 580-400071/22-B	Lab Control Sample	SPLP West	Solid	1312	
LCSD 580-400071/23-B	Lab Control Sample Dup	SPLP West	Solid	1312	
Prep Batch: 400945					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	SPLP West	Solid	3010A	400071
MB 580-400071/21-B	Method Blank	SPLP West	Solid	3010A	400071
LCS 580-400071/22-B	Lab Control Sample	SPLP West	Solid	3010A	400071
LCSD 580-400071/23-B	Lab Control Sample Dup	SPLP West	Solid	3010A	400071
Analysis Batch: 4010	81				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
	HAKA BT A	SPLP West	Solid	6010B	400945
570-105614-1			0-11-1	6010B	400945
570-105614-1 MB 580-400071/21-B	Method Blank	SPLP West	Solid	0010B	-000-0
570-105614-1 MB 580-400071/21-B LCS 580-400071/22-B	Method Blank Lab Control Sample	SPLP West SPLP West	Solid	6010B	400945

Analysis Batch: 255207

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	Moisture - 2540	255507
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	Moisture - 2540	255507
570-105614-3	HAKA_BT_B	Total/NA	Solid	Moisture - 2540	255507
570-105614-4	HAKA_BT_C	Total/NA	Solid	Moisture - 2540	255507
570-105614-5	HAKA_BT_D	Total/NA	Solid	Moisture - 2540	255507
570-105614-6	HAKA_BT_E	Total/NA	Solid	Moisture - 2540	255507

QC Association Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

General Chemistry

ISM Prep Batch: 255507

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	Increment,Prep
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	Increment, Prep
570-105614-3	HAKA_BT_B	Total/NA	Solid	Increment, Prep
570-105614-4	HAKA_BT_C	Total/NA	Solid	Increment,Prep
570-105614-5	HAKA_BT_D	Total/NA	Solid	Increment, Prep
570-105614-6	HAKA_BT_E	Total/NA	Solid	Increment, Prep

Job ID: 570-105614-1

Lab Sample ID: 570-105614-1 Matrix: Solid

Lab Sample ID: 570-105614-2

Lab Sample ID: 570-105614-3

Matrix: Solid

Matrix: Solid

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			1.0 g	1.0 mL	400071	08/10/22 14:13	JLS	EET SEA
SPLP West	Prep	3010A			50 mL	50 mL	400945	08/17/22 20:17	JLS	EET SEA
SPLP West	Analysis	6010B		1			401081	08/18/22 14:53	ТМН	EET SEA
	Instrument	ID: TAC047								
TCLP	Leach	1311			100.05 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:26	VZ0K	EET CAL 4
	Instrument	ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255881	08/10/22 15:19	KZX6	EET CAL 4
Total/NA	Prep	3050B			10 g	500 mL	256107	08/11/22 12:59	CS5Z	EET CAL 4
Total/NA	Analysis	6010B		10			256849	08/15/22 16:37	VZ0K	EET CAL 4
	Instrument	ID: ICP10								
Total/NA	ISM Prep	Increment,Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrument	ID: BAL62								

Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.05 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:28	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255881	08/10/22 15:19	KZX6	EET CAL 4
Total/NA	Prep	3050B			10 g	500 mL	256107	08/11/22 12:59	CS5Z	EET CAL 4
Total/NA	Analysis	6010B		10			256849	08/15/22 16:40	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrumen	t ID [.] BAI 62								

Client Sample ID: HAKA BT B Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.05 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:31	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrumen	t ID: BAL62								

Eurofins Calscience

5 9

Client Sample ID: HAKA_BT_C Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.01 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:33	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								
Total/NA	ISM Prep	Increment,Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4

Instrument ID: BAL62

Client Sample ID: HAKA BT D Date Collected: 07/28/22 13:50 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.04 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:36	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrumen	t ID: BAL62								

Client Sample ID: HAKA_BT_E Date Collected: 07/28/22 13:55 Date Received: 08/05/22 09:40

Prep Type TCLP TCLP TCLP TCLP	Batch Type Leach Prep Analysis Instrumen	Batch Method 1311 3010A 6010B t ID: ICP10	Run	Dil Factor	Initial Amount 100.02 g 5 mL	Final Amount 2000 mL 50 mL	Batch Number 255340 255638 255866	Prepared or Analyzed 08/08/22 23:00 08/09/22 20:18 08/10/22 14:38	Analyst XBO9 ECX6 VZ0K	EET CAL 4 EET CAL 4 EET CAL 4 EET CAL 4
Total/NA Total/NA	ISM Prep Analysis Instrumen	Increment,Prep Moisture - 2540 t ID: BAL62		1			255507 255207	08/09/22 13:30 08/09/22 16:00	KZX6 B4QL	EET CAL 4 EET CAL 4

Client Sample ID: HAKA_BTPC_A Date Collected: 07/28/22 15:25 Date Received: 08/05/22 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.04 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:40	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

Eurofins Calscience

Job ID: 570-105614-1

Lab Sample ID: 570-105614-4 Matrix: Solid

Lab Sample ID: 570-105614-5

Lab Sample ID: 570-105614-6 Matrix: Solid

Lab Sample ID: 570-105614-7

Matrix: Solid

Matrix: Solid

8/19/2022

Client Sample ID: HAKA_BTPC_B Date Collected: 07/28/22 15:30 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.06 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:43	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

Client Sample ID: HAKA_BTPC_C Date Collected: 07/28/22 15:35 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.06 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:45	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

Client Sample ID: HAKA_BTPC_D Date Collected: 07/28/22 15:40 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.03 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:48	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

1

Client Sample ID: HAKA_BTPC_E Date Collected: 07/28/22 15:45 Date Received: 08/05/22 09:40

Analysis

6010B

Instrument ID: ICP10

Batch Batch Dil Initial Final Batch Prepared Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Leach 1311 100.05 g 2000 mL 255340 08/08/22 23:00 XBO9 EET CAL 4 Prep 3010A 5 mL 50 mL 255638 08/09/22 20:18 ECX6 EET CAL 4

255866

Completion dates and times are reported or not reported per method requirements or individual lab discretion.

Laboratory References:

Prep Type

TCLP

TCLP

TCLP

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Matrix: Solid

Matrix: Solid

Matrix: Solid

EET CAL 4

Lab Sample ID: 570-105614-8 Matrix: Solid

Lab Sample ID: 570-105614-9

Lab Sample ID: 570-105614-10

Lab Sample ID: 570-105614-11

08/10/22 14:55 VZ0K

Accreditation/Certification Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

10

Laboratory: Eurofins Calscience The accreditations/certifications listed below are applicable to this report. Authority Program **Identification Number Expiration Date** Oregon NELAP 4175 02-02-23 5 Laboratory: Eurofins Seattle The accreditations/certifications listed below are applicable to this report. Identification Number Authority **Expiration Date** Program Oregon NELAP 4167 07-08-23
Method Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	EET CAL 4
6010B	Metals (ICP)	SW846	EET SEA
Moisture - 2540	Percent Moisture	SM	EET CAL 4
1311	TCLP Extraction	SW846	EET CAL 4
1312	SPLP Extraction	SW846	EET SEA
3010A	Preparation, Total Metals	SW846	EET CAL 4
3010A	Preparation, Total Metals	SW846	EET SEA
3050B	Preparation, Metals	SW846	EET CAL 4
Increment, Prep	ISM - Dry, Disaggregate, Sieve, Split,	EPA	EET CAL 4
Increment, Prep	ISM - As Received, Disaggregate, Split	EPA	EET CAL 4

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Eurofins Calscience

Sample Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-105614-1	HAKA BT A	Solid	07/28/22 13:30	08/05/22 09:40
570-105614-2	HAKA_BT_AZ	Solid	07/28/22 13:35	08/05/22 09:40
570-105614-3	HAKA_BT_B	Solid	07/28/22 13:45	08/05/22 09:40
570-105614-4	HAKA_BT_C	Solid	07/28/22 13:45	08/05/22 09:40
570-105614-5	HAKA_BT_D	Solid	07/28/22 13:50	08/05/22 09:40
570-105614-6	HAKA_BT_E	Solid	07/28/22 13:55	08/05/22 09:40
570-105614-7	HAKA_BTPC_A	Solid	07/28/22 15:25	08/05/22 09:40
570-105614-8	HAKA_BTPC_B	Solid	07/28/22 15:30	08/05/22 09:40
570-105614-9	HAKA_BTPC_C	Solid	07/28/22 15:35	08/05/22 09:40
570-105614-10	HAKA_BTPC_D	Solid	07/28/22 15:40	08/05/22 09:40
570-105614-11	HAKA_BTPC_E	Solid	07/28/22 15:45	08/05/22 09:40

Eurofins Calscience Irvine				:	1501
Tustin CA 92780 Phone (949) 261-1022 Fax (949) 260-3297	Chain of	Custody Rec	ord	Ş.	CUrotins Calscience
Client Information	Sampler Scott MUNUNION	Lab PM	n' Chavel	Carrier Tracking No(s): C	DC No: 40-17997332609 1
Contain Commany	Phone: 805 236 0222	E-Mailt	NOVEN LARBORINE 110	- <u>Ja</u>	ige: age 1 of 1
Realements Realize Consultants	12, U.C.		Analysis Rec	juested	#.0
and the Kill St. St RGOI	Due Date Requested [.]				eservation Codes:
State Zip: 1 / Ut.	TAT Requested (days)				- HCL M - Hexane - NaOH N - Nane - Nore
Phone:	P0#;				4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Email: 200 200 200 Email: 200 200 200 200 200 200 200 200 200 20	WO #:				24 Dodecahydrate
Project Name	Project #	10 59)	(0N 10)	570-105614 Chain of Custody	A A
The transmit that the second ment	SSOW#:) əjdü	с 		ر (specity) her:
			7J	at of	
Sample Identific _{artion}	Sample (C= 7	mple Matrix		dmpV ist	
Pa		grab) BT=Tiesue, A=Air) IL reservation Code: X			Special Instructions/Note:
BULAUA DT A					
Nither BT AL			*/ × × ×		
WHARA BT B			XX		
1 1444 BT C					
THEY BT - N) ((4)				
LTNAM DOT E			γ		
THAT OF PO - A	5 17				
HARA - 07PC 3					
LITTL BIPC-C					
THUR BIR J	L C				
Possible Hazard Identification	1 1547				
Non-Hazard Thammable Skin Irritant Pois	ison B Unknown Radii	ological	Sample Disposal (A fee may be a	issessed if samples are retained l	(onger than 1 month) Ear
Emission requested 1, If III IV, Other (specify)			Special Instructions/QC Requireme	nts.	
Emply Kit Reinquished by Reinnuished by	Date	Tin	le.	Method of Shipranent	فبمعقادي ويسواله والأمور معليد والإفراد المتركم الاختراف والمنارك مجافية البركم المراكل والمركب
Relinuished by	Date/Time:	Сотралу	Received by	Date Time:	LAUD Company K
Rettornished hw	Date/Time:	Company	Received by	Date /Time:	Company
5 1196	Date/Time:	Company	Received by	Datter	Company
New of years Intact Custody Seal No D∆ Yes ∧ No C			Cooler Temperature(s) °C and Other R	emarks. $\Im Q 0 9$	21/6-0
			12 13 14	8 9 10	Sc 1 4 4 2 2

e	0
2	9
Ð	te.
៊ូ	Sui
5	a)
ů	D
~	ş
č	2
Ĕ	õ
2	÷
	25

	Environment Testing	America
- eurofins		

Eurofins Calscience									🖒 eurofins	
2841 Dow Avenue, Suite 100	บี	lain of	f Custo	ody Rec	ord				8	Environment Testing America
Tustin CA 92780 Phone 714-895-5494										
Client Information (Sub Contract Lab)	Sampler			Lab PM Chang, T	erri		Carrier Tracking	No(s)	COC № 570-182827 1	
Client Contact: Shipping/Receiving	Phone:			E-Mail ⁻ Terri Cha	ng@et.eurofi	nsus.com	State of Origin. Hawaii		Page Page 1 of 1	
Company Eurofins Environment Testing Northwest				Accr	editations Require AP - Oregon.	ed (See note). State - Hawaii			Job #: 570-105614-1	
Address. 5.755. Bit Street East	Due Date Requested. 8/17/2022)	Analvsi	s Requested		Preservation Co	des. M - Hexane
City of our ender	TAT Requested (days)								A HCL B - NaOH C - Zn Acetate	N - None O AsNaO2
State Zir WA, 98424									D - Nitric Acid E - NaHSO4	Р - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone: 253-922-2310(Tel)	PO#			(0					F - MECH G - Amchlor H Ascorbic Acid	S - H2SO4 T TSP Dodecahydrate
Email	WO #:			or N	(on			12	- Ice J - Di Water	U - MCAA W - PH 4-5
Project Name: Hakalau Lead Assessment	Project #: 57002418			sə <u>)</u> э	P Lead			ənlistn	N-EUA L-EDA	Y Trizma Z - other (specify)
Site:	SSOW#,			dweg	142 M	*********		01 CO	Other ⁻	
	<u></u>	ample (Sample Type C=comp,	Matrix (w=water S=solid, D=waste/oli, eld	W.SN (1001)			nədmuk letc		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	S=grab) 87-	Tissue, A=Air)	09			<u>""</u>	Special I	nstructions/Note.
	$\left(\right)$	13 20	Preservatio							
HAKA_BT_A (570-105614-1)	7/28/22 H	awaijan		Solid	×			-		
Note: Since laboratory accreditations are subject to change, Eurofins Calscience p maintain accreditation in the State of Origin listed above for analysis/trests/mathX b attention immediately If all requested accreditations are current to date, return the	places the ownership of m being analyzed, the samp he signed Chain of Custod	nethod analyt les must be s y attesting to	e & accreditation hipped back to said complican	on compliance upo the Eurofins Calsi ce to Eurofins Cal	in out subcontrac sience laboratory science.	t laboratories. This or other instruction	sample shipment is forv s will be provided. Any c	rarded under chain-of- hanges to accreditatio	custody lif the labora n status should be bri	tory does not currently ought to Eurofins Calscience
Possible Hazard Identification					sample Dispo	sal (A fee ma	y be assessed if s	amples are retain	ed longer than	1 month)
Uncommed Deliverable Requested 1 II, III, IV, Other (specify)	Primary Deliverable	e Rank: 2			special Instruction	ro crient ctions/QC Requ	irements			SUITOM
Emply Rth Relinquished by	Da	te.		Tim	ö		Method of	Shipment:		
Relinquished by	Date/Time:	176	° C	TT ()	Received by			Date/Time:		Company
Relimination by	Date/Time:	- 	8	mpany	Received by			Date/Time:		Company
Relinquished by	Date/Time:		<u></u>	mpany	Received by			Date/Time:		Company

Custody Seal No

Custody Seals Intact: ∆ Yes ∆ No

Ver 06/08/2021

Cooler Temperature(s) °C and Other Remarks.

Eurofins Calscience

Securofins Environment Testing America

2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone: 714-895-5494

Phone: 714-895-5494	Samoler			Lab PN	4:								Сапі	er Tra	icking	No(s):			COC N):			
Client Information (Sub Contract Lab)				Chan	g, Te	erri							Flata							570-1	32827.1			
Client Contact	Phone:			E-Mail: Terri.(Char	ng@e	et.eur	ofins	us.co	m			Haw	vaii	ngan:					Page	1 of 1			
Shipping/Receiving	1				Accred	ditation	ns Req	uired	(See n	ote):										Job #:	05614 1			
Eurofins Environment Testing Northwest,					NEL	AP - (Orego	on; S	tate -	Haw	aıı									Preser	vation C	odes:		
Address: 5755 8th Street East	8/17/2022	eo:							A	naly	sis	Req	ues	sted	1		_		5205	A - HC	L	M-H∂ N-N	exane	
City:	TAT Requested (d	ays):																		8 - Na()H Acetate	0 - A	sNaO2	
Tacoma																				D - Nitr	ic Acid	P - Na Q - N	a2SO3	
State, Zip: WA, 98424									Ì											F - Me	DH	R - N S - H	∋2S2O3 2SO4	
Phone:	PO #:				_		1													G - Am H - Asc	chlor orbic Acid	T - TS U - Ar	3P Dodece cetone	ahydrate
253-922-2310(16) Email:	WO #:				Ž ,				ļ											I-lce J-DIV	Vater	V - M	CAA	
	Project #				es v	Ţ													iner	K - ED	ΓA λ	Y - Tr	izma	
Project Name: Hakalau Lead Assessment	57002418														Ì				onta	Other		Z - ott	her (specif	.fy)
Site:	SSOW#:					ldS I													õ					
		T		4	S Da	3	1										1		ber					
			Sample We	water,	a Iter	1312													Num					
		Sample	(C=Comp, Oews	ata/oil,	Pe of	108/													otal		Snacial	Instruc	tions/Nr	ote:
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) BT=Tiss	ue, A=Air)	ш Д	<u> </u> "							035		1.55				Ň		Special			
		13:30	rieselvalion c	-11-1	¥	N-	9 8888 9	1 0 2 2 7	C 265-87	2.4993	97970	100200	1995421		1 100			1	Ť,					
HAKA_BT_A (570-105614-1)	7/28/22	Hawaiian	3		+	<u>_</u>	+	. 	-													. 		
						_			Ļ					ļ	_			<u> </u>						
······································		1						1									Τ	٦.				~ *	-	
						+-			1				 [The	m	ID:_	R	80	or:	<u> </u>	_° Uno	-2	<u> </u>	
								+		<u> </u>			- (Cool	ler l	Dsc:	<u>S</u> E	<u> </u>		j	edEx:	Pe	 	
							<u> </u>	<u> </u>					_ 1	Pack	ang	;	51	n/		I	CPS:			
													_ (Cus	t. Se	eal:	l'es_	<u> </u>	0 <u></u> Vone]	Lab Cot Othery	ır:		
							Τ]	Blue	e Ice	², [¹	et, D	ну, .	NULL		Juici			
					+		┼┈	1					_	Į	I	1	1	1	133	N				
]	ll.		1.					<u>}</u>			-	l	1			or cha	uin-of-r	il	If the laho	atory doe	s not curre	entiv
Note: Since laboratory accreditations are subject to change, Eurofins Calscience	places the ownership being analyzed, the s	of method, an amples must b	alyte & accreditation c e shipped back to the	ompliance Eurofins (e upon Calscii	n out si ence ia	aborate	ractia ory or i	other i	nes. Instruct	ions v	vill be	provio	ded.	s ion Any c	chang	es to :	accred	ditation	n status s	hould be b	rought to	Eurofins C	Calscience
attention immediately. If all requested accreditations are current to date, return the	e signed Chain of Cu	istody attesting	to said complicance t	o Eurofins	a Cals	cience																4	46.5	
Possible Hazard Identification					s	ampl	e Dis	posi	ai (A	fee I	nay I	be a:	sses	sed	if s	amp	ies a	are re	etain	ea long	jer tnan	1 mont	nj onthe	
Unconfirmed					-		Retur	n To	Clien	nt IC Re	-	— D	ispo te	sal E	By L	ab			Arci	nive Foi			Julis	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Ľ	pecia		i actic	113/0															
Empty Kit Relinquished by		Date:			Time	e:	<u></u>	·						Meth	hod of	t Ship	ment:					ICom	0.00/	
Reliquished by	Date/Time:	~ 1	700 Compa			Reg	teivied	r V	1									้วไ	22	~	0SU	$\int \mathcal{L}$	2TA	J
Romination with the las	Date/Time:	<u>~ 1</u>	Compa	iny		R	Lived.	by: (<u>,</u>							Dat	e/Tim	e:				Comp	Jany	
	1					Per	aivor	bic								Dat	e/Tim	e:				Comr	pany	
Relinquished by:	Date/Time:		Compa	uny		rteo	.eivea	uy.																
Custody Seals Intact: Custody Seal No.:	The second second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			· · .	Cod	oler Te	mpera	iture(s)	°C ar	d Oth	er Rer	narks	s: •			1 N	· · ·				·	a tang	
Δ Yes Δ No																						Ver:	06/08/20	021

Login Number: 105614 List Number: 1 Creator: Patel, Jayesh

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-105614-1

List Source: Eurofins Calscience

Login Number: 105614 List Number: 2 Creator: Holdener, Heather D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	IR8 3.1/2.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-105614-1

List Source: Eurofins Seattle

List Creation: 08/12/22 12:11 PM

APPENDIX A-2:

2022 SAMPLING RESULTS SUMMARY TABLES AND LABORATORY ANALYTICAL REPORTS

This page was intentionally left blank.

Table A5 - Analytical Results for Total Lead in Multi-Increment Soil Samples Hakalau Beach Park

					Sample	Sample Identifier Sample Date e Depth (inches)	DU42_0-6_2 18-Apr-2 0-6	0224 2022	12B*	DU40_0-6_2 19-Apr-2 0-6	2022	240	DU42_0-6_2 20-Apr-2 0-6	022 022	42A	DU45_0-6_3 21-Apr-2 0-6	2022 2022	245
Analyte	Analytical Method	CASRN	Units	Tier 1 EAL >150m ¹	Residential Direct- Exposure Action Levels ²	Construction Worker Direct- Exposure Action Levels ³	Results	Q	RL	Results	Q	RL	Results	Q	RL	Results	Q	RL
Lead	EPA 6010B	7439-92-1	mg/kg	200	200	800	76.8*		0.800	131		0.800	99.0		0.800	104		0.800

Notes:

¹ State of Hawaii Department of Health Tier I Environmental Action Levels (EALs), Groundwater is a Current or Potential Source of Drinking Water (>150 meter to surface water body) presented in Table A-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

² State of Hawaii Department of Health Tier I EALs, Unrestricted Land-Use Scenario presented in Table I-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

³ State of Hawaii Department of Health Tier I EALs, Construction/Trench Worker Exposure Scenario presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

CASRN = Chemical Abstracts Service Registry No.

mg/kg= milligram(s) per kilogram

Q = qualifier

RL = reporting limit

* = Values listed for this decision unit represents the arithmetic mean of the replicate results.

TABLE A6 - Relative Percent Difference and Arithmetic Mean Calculations for Replicate Sample Detections - Total Lead in Multi-Increment Soil Samples Hakalau Beach Park

					Relative	Percent			Deletter	
Analyte	EPA Method	Sample Identification	Sample Type	Result (mg/kg)	Primary and Duplicate	Primary and Triplicate	Mean (mg/kg)	Standard Deviation	Standard Deviation	Comment
		DU42_0-6_202242B (1)	Primary	82.9						The data indicates that there is good precison in
Lead	6010B	DU42_0-6_202242B (2)	Duplicate	79.9	4%	20%	76.8	8.11	11%	the replicate data set with 11% RPD. The
		DU42_0-6_202242B (3)	Triplicate	67.6						the reported value within this Decision Unit.

Notes:

mg/kg = milligram(s) per kilogram (i.e. parts per million (ppm)).

Table A7 - Analytical Results for Total Lead in Multi-Increment Soil Samples Hakalau Beach Park

					Sample	Sample Identifier Sample Date e Depth (inches)	DU39_0-6_2 11-May-2 0-6	20223	39	DU41_0-6_2 12-May-2 0-6	2022 022	41	DU43_0-6_2 10-May-2 0-6	2022	43
Analyte	Analytical Method	CASRN	Units	Tier 1 EAL >150m ¹	Residential Direct- Exposure Action Levels ²	Construction Worker Direct- Exposure Action Levels ³	Results	Q	RL	Results	Q	RL	Results	Q	RL
Lead	EPA 6010B	7439-92-1	mg/kg	200	200	800	490		4.00	386		4.00	146		4.00

Notes:

490 Results shown in **bold** and highlighted yellow equal or exceed the Tier 1 Residential Direct-Exposure Action Level for lead.

¹ State of Hawaii Department of Health Tier I Environmental Action Levels (EALs), Groundwater is a Current or Potential Source of Drinking Water (>150 meter to surface water body) presented in Table A-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

² State of Hawaii Department of Health Tier I EALs, Unrestricted Land-Use Scenario presented in Table I-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

³ State of Hawaii Department of Health Tier I EALs, Construction/Trench Worker Exposure Scenario presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

CASRN = Chemical Abstracts Service Registry No. mg/kg= milligram(s) per kilogram Q = qualifier RL = reporting limit

Table A8 - Analytical Results for Total Lead in Multi-Increment Soil Samples (continued) Hakalau Beach Park

					Sample Identifier Sample Date e Depth (inches)	DU44_0-6_202244 11-May-2022 0-6			DU45_6-12_202245* 10-May-2022 6-12			
Analyte	Analytical Method	CASRN	Units	Tier 1 EAL >150m ¹	Tier 1 EAL >150m ¹ Residential Co Direct- Exposure Action E Levels ² Act		Results	Q	RL	Results	Q	RL
Lead	EPA 6010B	7439-92-1	mg/kg	200	200	800	402		4.00	83.7*		4.00

Notes:

402 Results shown in **bold** and highlighted yellow equal or exceed the Tier 1 Residential Direct-Exposure Action Level for lead.

¹ State of Hawaii Department of Health Tier I Environmental Action Levels (EALs), Groundwater is a Current or Potential Source of Drinking Water (>150 meter to surface water body) presented in Table A-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

² State of Hawaii Department of Health Tier I EALs, Unrestricted Land-Use Scenario presented in Table I-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

³ State of Hawaii Department of Health Tier I EALs, Construction/Trench Worker Exposure Scenario presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

CASRN = Chemical Abstracts Service Registry No.

mg/kg= milligram(s) per kilogram

Q = qualifier

RL = reporting limit

* = Values listed for this decision unit represents the arithmetic mean of the replicate results.

 TABLE A9 - Relative Percent Difference and Arithmetic Mean Calculations for Replicate Sample Detections - Total Lead in Multi-Increment Soil Samples

 Hakalau Beach Park

					Relative Diffe	Percent rence			Relative			
Analyte	EPA Method	Sample Identification	Sample Result Type (mg/kg)		Primary and Duplicate	Primary and Triplicate	Mean (mg/kg)	Standard Deviation	Standard Deviation	Comment		
		DU45_6-12_202245	Primary	72.1						The data indicates that there is good precision in		
Lead	6010B	DU45_6-12_202245B	Duplicate	92.4	25%	18%	83.7	10.44	12%	the replicate data set with 12% RPD. The arithmetic mean value of 83 7 mg/kg, is used as		
		DU45_6-12_202245C	Triplicate	86.5						the reported value within this Decision Unit.		

Notes:

mg/kg = milligram(s) per kilogram (i.e. parts per million (ppm)).

Table A10 - Analytical Results for total Lead in Stream Water Samples Hakalau Beach Park

				Sample Identifier	SW49_202249			SW50_202	2250)	SW55_202255		5
				Sample Date	11-May-2022			11-May-2022			11-May-2022		
Sample Descripti		Sample Description	Stream water collected from all depths of the stream near DU 49		Stream water collected from all depths of the stream near DU 50		ed from ream	Stream water collected fro all depths of the stream near DU 55		ed from eam			
Analyte	Analytical Method	CASRN	Units	Tier 1 EAL >150m ¹	Results	Q	RL	Results	Q	RL	Results	Q	RL
Total Resource Conservation and Recovery Act (RCRA) Metals													
Lead	EPA 6010B	7439-92-1	µg/l	15	ND		50	ND		50	ND		50

Notes:

¹ State of Hawaii Department of Health Tier I Environmental Action Levels (EALs), Groundwater Action Levels, Groundwater is a Current or Potential Source of Drinking Water (>150 meter to surface water body) presented in Table A of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

µg/l = microgram(s) per liter.

CASRN = Chemical Abstracts Service Registry No.

ND = Not Detected. Indicates that the analyte was not detected in concentrations above the laboratories method reporting limit.

NS = No Standard. Indicates that a State of Hawaii Department of Health and/or RCRA Waste Characterization action level for the contaminant of potential concern is not established.

Q = Data Qualifier.

RL = Reporting Limit (detection limit).

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-97597-2

Client Project/Site: Hakalau Assessment

For:

LINKS

Review your project results through

EOL

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Kealamahi Pacific Consultants, LLC 111 Hekili Street Ste. A601 Kailua, Hawaii 96734

Attn: Scott Moncrief

Terrichang

Authorized for release by: 7/15/2022 3:28:22 PM

Terri Chang, Project Manager I (657)210-6295 Terri.Chang@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	18

Definitions/Glossary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment Job ID: 570-97597-2

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

Eurofins Calscience

Job ID: 570-97597-2

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-97597-2

Comments

No additional comments.

Receipt

The samples were received on 5/26/2022 10:35 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 23.6° C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment Job ID: 570-97597-2

Client Sample ID: DU	39_6-12_20223	Lab Sample ID: 570-97597-10					
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	737		4.00	mg/Kg	5	6010B	Total/NA
Client Sample ID: DU	41_6-12_20224	41			Lab San	nple ID: 5	70-97597-12
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	360		4.00	mg/Kg	5	6010B	Total/NA
Client Sample ID: DU	44_6-12_20224	14			Lab San	nple ID: 5	70-97597-14
Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Ргер Туре
Lead	339		4.00	mg/Kg	5	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Calscience

Client Sample Results

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment Job ID: 570-97597-2

Method: 6010B - Metals (ICP)

Client Sample ID: DU39_6-12_2 Date Collected: 05/11/22 16:00 Date Received: 05/26/22 10:35	02239					Lab Sam	ple ID: 570-97 Matrix	597-10 : Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	737		4.00	mg/Kg		07/13/22 19:45	07/14/22 14:40	5
Client Sample ID: DU41_6-12_2	02241					Lab Sam	ple ID: 570-97	597-12
Date Collected: 05/12/22 09:40							Matrix	: Solid
Date Received: 05/26/22 10:35								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	360		4.00	mg/Kg		07/13/22 19:45	07/14/22 14:43	5
Client Sample ID: DU44_6-12_2	02244					Lab Sam	ple ID: 570-97	597-14
Date Collected: 05/11/22 13:00							Matrix	: Solid
Date Received: 05/26/22 10:35								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	339		4.00	mg/Kg		07/13/22 19:45	07/14/22 14:45	5

Job ID: 570-97597-2

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 570-248997/1-/ Matrix: Solid Analysis Batch: 249306	A MB	МВ							Clie	ent Samp	ole ID: Me Prep Typ Prep Bat	thod e: Tot ch: 2	Blank tal/NA 48997
Analyte	Result	Qualifier		RL		Unit		D	P	repared	Analyze	d	Dil Fac
Lead	ND			0.812		mg/k	ζg	_	07/1	3/22 19:45	07/14/22 1	3:57	1
Lab Sample ID: LCS 570-248997/2 Matrix: Solid Analysis Batch: 249306	- A		Sniko			1.05	Clie	ənt	Sar	mple ID:	Lab Cont Prep Typ Prep Bat	rol Sa e: Tot ch: 2	ample tal/NA 48997
Analyte					Result	Qualifier	Unit		п	%Rec	/inits		
Lead			51.0		53.16		mg/Kg			104	80 - 120		
Lab Sample ID: LCSD 570-248997/ Matrix: Solid Analysis Batch: 249306	'3-A					•	Client S	am	ple	ID: Lab	Control S Prep Typ Prep Bat	ampl e: Tot ch: 2	e Dup tal/NA 48997
			Spike		LCSD	LCSD					%Rec		RPD
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			50.8		51.88		mg/Kg		_	102	80 - 120	2	20

Metals

ISM Prep Batch: 246211

Lab Sample ID 570-97597-10	Client Sample ID DU39_6-12_202239	Prep Type Total/NA	Matrix Solid	Method Increment, Prep	Prep Batch
570-97597-12	DU41_6-12_202241	Total/NA	Solid	Increment, Prep	
570-97597-14	DU44_6-12_202244	Total/NA	Solid	Increment, Prep	
Prep Batch: 24899	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-97597-10	DU39_6-12_202239	Total/NA	Solid	3050B	246211

570-97597-10	D039_6-12_202239	IOLAI/INA	50110	3030B	240211
570-97597-12	DU41_6-12_202241	Total/NA	Solid	3050B	246211
570-97597-14	DU44_6-12_202244	Total/NA	Solid	3050B	246211
MB 570-248997/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-248997/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-248997/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	

Analysis Batch: 249306

570-97597-12	DU41_6-12_202241	Total/NA	Solid	3050B	246211	8
570-97597-14	DU44_6-12_202244	Total/NA	Solid	3050B	246211	
MB 570-248997/1-A	Method Blank	Total/NA	Solid	3050B		9
LCS 570-248997/2-A	Lab Control Sample	Total/NA	Solid	3050B		
LCSD 570-248997/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B		
Analysis Batch: 2493	806					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
Lab Sample ID 570-97597-10	Client Sample ID DU39_6-12_202239	Prep Type Total/NA	Matrix Solid	6010B	Prep Batch 248997	
Lab Sample ID 570-97597-10 570-97597-12	Client Sample ID DU39_6-12_202239 DU41_6-12_202241	Prep Type Total/NA Total/NA	Matrix Solid Solid	Method 6010B 6010B	Prep Batch 248997 248997	
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244	Prep Type Total/NA Total/NA Total/NA	Matrix Solid Solid Solid	Method 6010B 6010B 6010B	Prep Batch 248997 248997 248997	11
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14 MB 570-248997/1-A	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244 Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid	Method 6010B 6010B 6010B 6010B 6010B	Prep Batch 248997 248997 248997 248997 248997	12 13
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14 MB 570-248997/1-A LCS 570-248997/2-A	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244 Method Blank Lab Control Sample	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid	Method 6010B 6010B 6010B 6010B 6010B 6010B 6010B	Prep Batch 248997 248997 248997 248997 248997 248997	12 13
Lab Sample ID 570-97597-10 570-97597-12 570-97597-14 MB 570-248997/1-A LCS 570-248997/2-A LCSD 570-248997/3-A	Client Sample ID DU39_6-12_202239 DU41_6-12_202241 DU44_6-12_202244 Method Blank Lab Control Sample Lab Control Sample Dup	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid	Method 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	Prep Batch 248997 248997 248997 248997 248997 248997 248997	12 13 14

Client Sample ID: DU39_6-12_202239

Job ID: 570-97597-2

Matrix: Solid

Matrix: Solid

Lab Sample ID: 570-97597-10 Matrix: Solid

Lab Sample ID: 570-97597-12

Lab Sample ID: 570-97597-14

Date Collected: 05/11/22 16:00 Date Received: 05/26/22 10:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					246211	06/30/22 11:19	KZX6	ECL 4
Total/NA	Prep	3050B			10 g	500 mL	248997	07/13/22 19:45	CS5Z	ECL 4
Total/NA	Analysis	6010B		5			249306	07/14/22 14:40	K1UV	ECL 4
	Instrumen	t ID: ICP10								

Client Sample ID: DU41_6-12_202241 Date Collected: 05/12/22 09:40 Date Received: 05/26/22 10:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					246211	06/30/22 11:19	KZX6	ECL 4
Total/NA	Prep	3050B			10 g	500 mL	248997	07/13/22 19:45	CS5Z	ECL 4
Total/NA	Analysis	6010B		5			249306	07/14/22 14:43	K1UV	ECL 4
	Instrumen	t ID: ICP10								

Client Sample ID: DU44_6-12_202244 Date Collected: 05/11/22 13:00 Date Received: 05/26/22 10:35

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	ISM Prep	Increment, Prep					246211	06/30/22 11:19	KZX6	ECL 4
Total/NA	Prep	3050B			10 g	500 mL	248997	07/13/22 19:45	CS5Z	ECL 4
Total/NA	Analysis	6010B		5			249306	07/14/22 14:45	K1UV	ECL 4
	Instrumen	t ID: ICP10								

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

	Accreditation/C	Certification Summary		1
Client: Kealamahi Pacifi Project/Site: Hakalau As	c Consultants, LLC sessment		Job ID: 570-97597-2	
Laboratory: Eurofin	ns Calscience as listed below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
Oregon	NELAP	4175	01-31-23	5
				6
				8
				9
				1
				1
				1

Eurofins Calscience

Method Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	ECL 4
3050B	Preparation, Metals	SW846	ECL 4
Increment, Prep	ISM - Dry, Disaggregate, Sieve, Split,	EPA	ECL 4

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Assessment

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-97597-10	DU39_6-12_202239	Solid	05/11/22 16:00	05/26/22 10:35
570-97597-12	DU41_6-12_202241	Solid	05/12/22 09:40	05/26/22 10:35
570-97597-14	DU44_6-12_202244	Solid	05/11/22 13:00	05/26/22 10:35

بة في ف	eurofins	ĩ	1,									ة 	ち ピ	HAIN	OF C	:UST 05/12	ОDY	REC	ORD	69)
7440 L Eor coi	incoln Way Garden Grove CA 92841 unar service / sample dron off informat	-1427 • (714) 89 tion_contact_us26	15-5494 sales@eumfii			570-97597 0	hain of C	ustody				PA	Щ Ш			Ц В		7		1 1
LABO	SRATORY CLIENT Kealamahi Pac	ific Consultants	', LLC		0n 110			ENT PROJ	ECT NAME	/ NUMBER.					P O NO					
ADDF	RESS 103 South Kalaheo Ave						- Ř	OJECT CO	NTACT	ŧ.					SAMPLE	ER(S) (PRI	(TNI			
CITY	Kailua			STATE.	HI ZIP	96734-293									KP, K	C, EW,	SM			
TEL.	808-208-8616	E-MAIL. Scott	tmoncrief8	08@gmai	l com						RE	OUES.	LED A	NALY	SES			-		1
TURN	VAROUND TIME (Rush surcharges may app	oly to any TAT not 'S	STANDARD")							Please ch	eck box o	r fill in bla	nk as nee	ded						
	SAME DAY LI 24 HK LL COELT EDF GLOBALID	48 HK		DAYS .		LOG CODE.						га Соге				9				
SPEC	XAL INSTRUCTIONS								ţ			1 Ter				518				
Ple	ase hold DU43_6-12_202243, D J44_6-12_202244	U39_6-12_202	239, DU41_(3-12_20224	÷	рәл) 🗆 СКО 	ОЯО 🗆 (9-C36 🗆 C6-C44		260) 260) 262)	35) 🗆 En Core 🗆	s270) s (8081)	(280	NIS 0728 🗆 0728			aracia o santa data		
LAB		SAMPL	ING		ON	esei	ьн(⁶	p)Hq		N/X	8) s(09) () eO()8) S{	🗆 sl		C			
USE ONLY	SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	qnU enq	Field T	Τ□	HAT HAT	918		Prel	səq DV2	ЪСЕ	-1∆q	Cr(/	ЧЭЛ			
	DU45_6-12_202245	5/10/2022	1030AM	SOIL	۰.	×											×			
	DU45_6-12_202245B	5/10/2022	2PM	SOIL	۲	×											×			
	DU45_6-12_202245C	5/10/2022	2PM	SOIL	۳-	×											×			
	DU43_0-6_202243	5/10/2022	1145AM	SOIL	٣	×											×			
	DU43_6-12_202243	5/10/2022	1145AM	SOIL	۳	×											×			
	SW49_202249	5/11/2022	10AM	WATER	٢	×											x			
	SW50_202250	5/11/2022	1040AM	WATER	۲	×				,							×			
	SW55_202255	5/11/2022	1105AM	WATER	+	×											×			
	DU39_0-6_202239	5/11/2022	4PM	SOIL	1	×										~~~~	×			
	DU39_6-12_202239	5/11/2022	4PM	SOIL	-	×											×			
Relin KATIE	nquished byr (Signature) : PAGE				Rece	ved by [.] (Signa	ature/Affilia	tion)						Date:			Time			
Relin	nquished by (Signature)				Rece	ived by [,] (Signa	ature/Affilia	tion)						Date			Time			
Relin	nquished by' (Signature)				Rece	ived by [.] (Sign	ature/Affilia	tion)						Date			Time			T
																		06/02/1	4 Revisior	Ę
									1	1		1				Ę	4		2	
									3	2			5			5				

• •	eurofins												1	U	HAIN	I O F	CC	STC
0								/# OM	'LAB USE (JNLY			6	ATE:			ö	5/12/2
L		50 NC	4 1) 4										7d	/GE:		2		Ŗ
LABO.	ATORY CLIENT	cific Concultant			call us			CLIEN.	T PROJECT	- NAME / N	UMBER.					PO	Q	
			19 [,] LLC					Tak T	alau Ass	essment								
ADDR	ESS: 400 Court Valation Aug								CT CONTA							CAME	10/02/02	
	I US SOULI I KARARED AVE									þ								
CITY				STATE:	ZIF	ó		T								5	2	
	Kailua				ī	96734-	293										י על	τΛ, Ο
TEL.		E-MAIL.																
	808-208-8616	<u>scc</u>	<u>ottmoncrief8</u>	08@gma	ul com							RE	QUES	TED /	ANAL	YSE	ß	
TURN	AROUND TIME (Rush surcharges may ap	ply to any TAT not "	STANDARD")				n F			Å	ase che	ck box or	fill in blar	hk as nee	eded.			
	AME DAY D 24 HR	48 HR	72 HR 🛛	5 DAYS	X STANI	DARD							၀၁	<u> </u>			2/0	
						100 00	DE.						Тепа			V	209 ⊏	9812
SPEC	AL INSTRUCTIONS.					F	╞		C44		0		□ ə			vis	IX7	: 🗆
SEI	E PAGE 1							(1 Ce-		0928	(0	noDi			0728	Þ2/01	6612
						p	p	วชอา	олаа 1 рес			928) :	u3 🗆	(02	(;	3 🗆 02	09 □	. 🗆 96
						əviəs	ved iltere	⊐ (6)ŀ	⊐ (p)ŀ		TM \	nates	2032)	, 28) e	, 808)	28 🗆	etals i	112 🗆
LAB		SAMF	PLING	VIDTON	NO	bre	iese	IGT	-19T 그 H	-н	XEX	306) de	00	sBs	eH,	M S	(17)
		DATE	TIME		CONT.	٩U	Pro Fié		미	ЧТ	T8	xo	ЪлЧ	∿s	ЬС	∀Ч	ST	Cu
	DU41_0-6_202241	5/12/2022	0940AM	SOIL	-	×												
	DU41_6-12_202241	5/12/2022	0940AM	SOIL	۲	×												
	DU44_0-6_202244	5/11/2022	1PM	SOIL	-	×												
	DU44_6-12_202244	5/11/2022	1PM	SOIL	٢	×												
							_		+									
									-	\square				_				
							_					-		+				
											_							Τ
Relin	quished by (Signature)				Rec	ceived by (Signature	/Affiliation	Ê						Dat	¢		
KATIE	PAGE																	
Relin	quished by (Signature)				Rec	ceived by' (Signature	/Affiliation	(c)						Dat	ö		
					_													

۲ () ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	CH AIN OF CUSTO	LY RECORD
744° or May Galden Grove C 2641.1427 714) 895 F For clube Assemble dropp of the and china is service Assemble service Assemble and a ser	PAGE OF	3
L U⊃VCIE Kealamer Pacific Cons Lants LLC	Makalar Assessment	
103 Sou h Kalaheu e		
c a lua B 2534 253	s Moncrie KP, 13, 6, E	√, 5M
c 208 86 6 E scot = 508Cumail co	REQUESTED / ALYSES	
LAC - N DARD	Pease coxic lark as r	
DOFLEDF GLOBA	3 e	
Picase hold	40] 40]	
0054-sediment_202254 a DU39-6-12-202239	() () () () () () () () () () () () () (P
0.45-6-12-20224515 Samplinc 10.45-6-12-20221.C Samplinc 10.45-70-12-12-12-12-12-12-12-12-12-12-12-12-12-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	paj
A DU51_Sediment, 20251 05/09/22 3 PM 5221 ment 1		
" DUJSH-Sediment-20254 05/62/24 9 AM ischment i		>
V 1 1 100 - 510/20 21/01/20 SHOD-21-3-54-00 /		2
1 DU45.6-12.202450 05/10/22 2 PM 50:1 1 1 V		>
0045-6-12-202456 35/10/22 2PM 321 1 /		2
1 1 1.02 +11/2 20/16/0 2420-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		2
1 DUH3-6-12-2022 43 05/10/20 13/14 50:1 1 1		2
		2
SW50-202250 05/11/22 10 4041 Water 1		>
SWESS- 2022555 05/11/22 11:05 AN Water (V		>
Hero or Signa 6 Tank 200 una	At	
	ψ () ¹ ¹	
	volore man 33. al.	1000
2	2	CF C2 X KE SC1
>	4 5 7 8 9 10 11 12 13 14	

United States Department of Association Animal and Plant Health Inspection Service Plant Protection & Ouar infine 4700 River Rond Riverdale MID 20757

Permit to Receive Soil Regulated by 7 CFR 330

11	us permit was generated cle	ctionically via the ePermits sy	stem
PERMITEE NAME	Terri Garcia	PERMITNUMBER	[230-20] (0034
COMPANY	Eurofins Calscience, LLC	APPLICATION NUMBER	P>>> 191121-001
RI CEIVINC ADDRI SS	71101 incoln Way	DATE 18801 D	02 10 20 0
	Guden Grove CA 22811		
MAILING ADDIG 55	71101 uncoln Way		
	Garden Grove CA (2811		
PHONE	(711) 895 5494		
		I XPIRI S	02/10/2623
Doublas AZ Lukeville A Secundo CA Freino CA Si rum nto CA Sin Di -o Hinttord CT New Haven Jacksonville H. Key West Ft. Port Canaveral FL Po Savinnah GU Aguna HI IN Indrinapolis KY Loui Houlton ME Portland MI Portage MN International Northern Mariana Islands Raleigh NC Wilmington NM Sintalere a NV La Rouses Point NY Jamaier Foledo OH Wilmington O Pritisburgh PA Scranton P Warwick/Providence SC O Christia FX Dallas TV De Liceport TX Galveston T Presidio TX Propresso T	4 Nico AZ No iles AZ P Lon, Beach CA, Oakland G a, CA, Surake, CA, Suray DL, Dover, DL, Wahan, tori t H, Miami LL, Mianni (Cu rt Everglades FL, Sanford J, Hilo HL, Honolulu HL, Kah sville, MA, South Boston, M Detroit, ML, Port Huron, M Falls, MN, Minne, upolis, MC, MS, Gullport, MS, Port Bien ND, Dunseith, ND, Lembin, i Veras, NY, Alban, N, M NY, Newbur, H, OH, Astar DK, Oklahoma City, OR, Por PR, Aguadilla, PR, Carolina Charleston, TN, Memphis, FL Li Rio, TA, La Je, Pa, TN, Hurible, TS X, Hidalgo, TX, Humble, TS X, Bio, Grandy, Cuy, TX, Ren	tho rise AZ Surlar AZ Iteo eX Ontare CA Oti Mari C rhe CA eith arthuricia O eith ti Euderdale Hart Ms- rio DHI Ted Ex UPS etc.) H I Tumpi Hawkoni HI Lihue D Baltimore MD Beltsville M I Romalus MT Suit Sunt Mari D Baltimore MD Beltsville M I Romalus MI Suit Sunt Mari D Baltimore MD Beltsville M I Romalus MI Suit Suit Mari D Baltimore MD Beltsville M I Romalus MI Suit Suit Mari D Baltimore MD Beltsville M I Romalus MI Suit Suit Mari O Kusis City MO Station M Ville MI Kern and MI Reoss ND Periol SJ Fritha NMA Earth France MO Station N D Frith SJ Eritha NMA D Frith SJ Eritha NMA D Frither M Neurosci NA PR Lajardo PR May guez PR N Ni hville TX Austin TX Bi TP iso TX Fibens TA Filcon v Eredo TX FostIndios TA Fi	on CV (alc ico CA T) v Fert Hueneme CV v Fert Hueneme CV v Fert EO D nyer CI ers FF FF Persocoli i GA Athati GA i D Fastport IF Chicago F Bingor MF Chais MF i MN Duluth MN Grind IP Commonweith of the Alle AFF Sweet (1) S NC Ibuqu reac NM Columbus Y Butfilo NY Chimy Fan Fund OFF Columbus OFF sburg, PA Fhili kelphri PA Ponce RF rownsville TX Corpus TX FortEffincock TX than TX Port Arthur TX in CF Sili Like City VA
Dulles VA Nortolk ALS	i Croix VESt Hiomas VE	Berlin WA Blune WA Oroy	ille WA Port Arectes WA
Scilic WA Sumie WEO	arcen Bay, WE Milwaal ee		
HAND CARPA	<u> </u>		
l	nder the conditions specified	this perint inflorizes the follow	NID_

Quantity of Soil per Shipment and Treatment Sterilization will interfere with intended use - Your Licility MUST be inspected and approved to receive this soil

SPECIAL INSTRUCTIONS TO INSPECTORS

See permit conditions below

		En 4t Er13-0-20-00034
THIS PERMIT HAS BLEN APPROVED FFECTRONICATELY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VEATPERMITS		DAH
et i pra er		
Gibbs Smith		02/10/2020
	1 150	I I I № Én

1 cl

Login Number: 97597 List Number: 1 Creator: Chang, Terri

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

14

List Source: Eurofins Calscience

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-105614-1

Client Project/Site: Hakalau Lead Assessment

For:

Kealamahi Pacific Consultants, LLC 111 Hekili Street Ste. A601 Kailua, Hawaii 96734

Attn: Scott Moncrief

Authorized for release by: 8/19/2022 12:44:30 PM Lori Thompson, Project Manager I (657)212-3035 Lori.Thompson@et.eurofinsus.com

Designee for

LINKS

Review your project results through

EOL

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Terri Chang, Project Manager I (657)210-6295 Terri.Chang@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	16
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	26

3

Qualifiers

General Chemistry

Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	_
H3	Sample was received and analyzed past holding time.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count
Job ID: 570-105614-1

Laboratory: Eurofins Calscience

Narrative

Job Narrative 570-105614-1

Comments

No additional comments.

Receipt

The samples were received on 8/5/2022 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.9° C and 1.2° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method Moisture - 2540: The following samples were received outside of holding time: HAKA_BT_A (570-105614-1), HAKA_BT_AZ (570-105614-2), HAKA_BT_B (570-105614-3), HAKA_BT_C (570-105614-4), HAKA_BT_D (570-105614-5) and HAKA_BT_E (570-105614-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

Client Sample ID: HAKA_	BT_A				Lab Sa	mple ID: 5	70-105614-1		
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Prep Type		
Lead	10900		8.00	mg/Kg	10	6010B	Total/NA		
Lead	25.6		0.500	mg/L	1	6010B	TCLP		
Lead	4.32		0.0300	mg/L	1	6010B	SPLP West	5	
Client Sample ID: HAKA_	BT_AZ				Lab Sa	mple ID: 5	70-105614-2		
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре		
Lead	11400		8.00	mg/Kg	10	6010B	Total/NA		
Lead	22.9		0.500	mg/L	1	6010B	TCLP	8	
Client Sample ID: HAKA_	BT_B				Lab Sa	mple ID: 5	70-105614-3		
No Detections.								9	
Client Sample ID: HAKA_	BT_C				Lab Sa	mple ID: 5	70-105614-4		
No Detections.									
Client Sample ID: HAKA_	BT_D				Lab Sa	mple ID: 5	70-105614-5		
No Detections.									
Client Sample ID: HAKA_	BT_E				Lab Sa	mple ID: 5	70-105614-6	13	
No Detections.									
Client Sample ID: HAKA_	BTPC_A			Lab Sample ID: 570-105614-7					
No Detections.									
Client Sample ID: HAKA_	BTPC_B				Lab Sa	mple ID: 5	70-105614-8		
No Detections.									
Client Sample ID: HAKA_	BTPC_C				Lab Sa	mple ID: 5	70-105614-9		
No Detections.									
Client Sample ID: HAKA_	BTPC_D				Lab San	nple ID: 57	0-105614-10		
No Detections.									
Client Sample ID: HAKA_	BTPC_E				Lab San	nple ID: 57	0-105614-11		

No Detections.

This Detection Summary does not include radiochemical test results.

Method: 6010B - Metals (ICP)

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40					Lab Sam	ple ID: 570-10 Matrix	5614-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Lead	10900		8.00	mg/Kg	08/11/22 12:59	08/15/22 16:37	10
Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40					Lab Sam	ple ID: 570-10 Matrix	5614-2 :: Solid
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Lead	11400		8.00	mg/Kg	08/11/22 12:59	08/15/22 16:40	10

Method: 6010B - Metals (ICP) - TCLP

Job ID: 570-105614-1

5

6

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	25.6		0.500	mg/L		08/09/22 20:18	08/10/22 14:26	1
Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-2 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	22.9		0.500	mg/L		08/09/22 20:18	08/10/22 14:28	1
Client Sample ID: HAKA_BT_B Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-3 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:31	1
Client Sample ID: HAKA_BT_C Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40	-	• ""			_	Lab Samp	ole ID: 570-10 Matrix	5614-4 :: Solid
Analyte	Result	Qualifier	RL		D	Prepared	Analyzed	
	ND		0.500	mg/L		06/09/22 20:16	06/10/22 14:55	I
Client Sample ID: HAKA_BT_D Date Collected: 07/28/22 13:50 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-5 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:36	1
Client Sample ID: HAKA_BT_E Date Collected: 07/28/22 13:55 Date Received: 08/05/22 09:40	Decult	Qualifian	DI .	lle it		Lab Samp	ole ID: 570-10 Matrix	5614-6 :: Solid
	ND	Quaimer	0.500			08/00/22 20:18	Analyzeu 08/10/22 14:38	
Client Sample ID: HAKA_BTPC_A Date Collected: 07/28/22 15:25 Date Received: 08/05/22 09:40	ND		0.500	ing/L		Lab Samp	ole ID: 570-10 Matrix	5614-7 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:40	1
Client Sample ID: HAKA_BTPC_B Date Collected: 07/28/22 15:30 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-8 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:43	1
Client Sample ID: HAKA_BTPC_C Date Collected: 07/28/22 15:35 Date Received: 08/05/22 09:40						Lab Samp	ole ID: 570-10 Matrix	5614-9 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:45	1

Job ID: 570-105614-1

Method: 6010B - Metals (ICP) - TCLP

Client Sample ID: HAKA_BTPC_[Date Collected: 07/28/22 15:40 Date Received: 08/05/22 09:40)					Lab Samp	le ID: 570-105 Matrix	614-10 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:48	1
Client Sample ID: HAKA_BTPC_E						Lab Samp	le ID: 570-105	614-11
Date Collected: 07/28/22 15:45							Matrix	: Solid
Date Received: 08/05/22 09:40								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.500	mg/L		08/09/22 20:18	08/10/22 14:55	1

5 6

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

Method: 6010B - Metals (ICP) - SPLP West

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30						Lab Sam	ole ID: 570-10 Matrix	5614-1 :: Solid
Date Received: 08/05/22 09:40								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.32		0.0300	mg/L		08/17/22 20:17	08/18/22 14:53	1

Client Sample Results

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-1 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22.0	H H3	0.100	<u> </u>		rioparoa	08/09/22 16:00	1
Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-2 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.2	H H3	0.100	%			08/09/22 16:00	1
Client Sample ID: HAKA_BT_B Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-3 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	34.1	H H3	0.100	%		•	08/09/22 16:00	1
Client Sample ID: HAKA_BT_C Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-4 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.3	H H3	0.100	%		•	08/09/22 16:00	1
Client Sample ID: HAKA_BT_D Date Collected: 07/28/22 13:50 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-5 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analvzed	Dil Fac
Percent Moisture	27.6	H H3	0.100	%			08/09/22 16:00	1
Client Sample ID: HAKA_BT_E Date Collected: 07/28/22 13:55 Date Received: 08/05/22 09:40						Lab Sam	ple ID: 570-10 Matrix	5614-6 :: Solid
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	25.0	H H3	0.100	%			08/09/22 16:00	1

Lead

Job ID: 570-105614-1

Lab Sample ID: MB 570-256107/1-A							(Clie	nt Samp	ole ID: M	ethod	Blank
Matrix: Solid										Prep Ty	pe: To	tal/NA
Analysis Batch: 256849										Prep Ba	itch: 2	56107
	MB	MB					_	_			_	
Analyte I	Result	Qualifier	RL		Unit		<u>D</u>	PI	repared	Analyz	ed	Dil Fac
Lead	ND		0.821		mg/K	g		08/1	1/22 12:59	08/15/22	12:42	1
l ab Sample ID: I CS 570-256107/2-A						Cli	ont	Sar		Lah Cor	trol S	amplo
Matrix: Solid							ent	Jai	inpie iD.	Pron Ty	ne To	
Analysis Batch: 256849										Pren Ra	tch: 2	56107
Analysis Bateri. 200040			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Lead			49.5	47.79		mg/Kg		—	97	80 - 120		
Lab Sample ID: LCSD 570-256107/3-	A				C	Client S	Sam	ple	ID: Lab	Control	Samp	le Dup
Matrix: Solid										Prep Ty	pe: To	tal/NA
Analysis Batch: 256849										Prep Ba	tch: 2	56107
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lead			50.5	50.96		mg/Kg			101	80 - 120	6	20
Lab Sample ID: LB 570-255340/1-B Matrix: Solid							(Clie	nt Samp	ole ID: M Prep	ethod Type:	Blank TCLP
Analysis Batch: 255866										Prep Ba	tch: 2	55638
	LB	LB										
Analyte I	Result	Qualifier	RL		Unit		D	Pi	repared	Analyz	ed	Dil Fac
Lead	ND		0.500		mg/L			08/0	9/22 20:18	08/10/22	13:57	1
Lab Sample ID: LCS 570-255340/2-B Matrix: Solid Analysis Batch: 255866						Cli	ent	Sar	nple ID:	Lab Cor Prep Prep Ba	itrol S Type: itch: 2	ample TCLP 55638
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Lead			2.00	2.255		mg/L		_	113	80 - 120		
Lab Sample ID: LCSD 570-255340/3- Matrix: Solid Analysis Batch: 255866	в				C	Client S	Sam	ple	ID: Lab	Control : Prep Prep Ba	Sampl Type: itch: 2	e Dup TCLP
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Lood			2.00	2.010		mg/L		_	101	80 - 120	11	20
Leau								Clie	nt Sam		ethod	Blank
Leau Lab Sample ID: MB 580-400071/21-E Matrix: Solid	5								Pr	ep Type	SPL	P West
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081	MD	мв							Pr	ep Type Prep Ba	SPLF	P West 00945
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081	MB	MB	Ы		Unit		п	D	Pr	ep Type: Prep Ba	SPLF	P West 00945
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081	MB Result	MB Qualifier	RL	·	Unit		<u>D</u>	P i	Pr repared	ep Type Prep Ba Analyz	: SPLF atch: 4	P West 00945 Dil Fac
Lead Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081 Analyte Lead Lead Lab Sample ID: LCS 580-400071/22- Matrix: Solid Analysis Patrix: 401021	MB Result ND	MB Qualifier	RL 0.0300		<mark>Unit</mark> mg/L	Cli	D ent	P ı 08/1 Sar	Pr repared 7/22 20:17 nple ID: Pr	ep Type: Prep Ba Analyz 08/18/22 Lab Con ep Type:	ed 13:12 trol S SPLF	Dil Fac
Lead Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081 Analyte Lead Lab Sample ID: LCS 580-400071/22- Matrix: Solid Analysis Batch: 401081	MB Result ND	MB Qualifier			Unit mg/L	Cli	D ent	Pi 08/1 <mark>Sar</mark>	Pr repared 7/22 20:17 mple ID: Pr	ep Type: Prep Ba <u>Analyz</u> 08/18/22 Lab Cor ep Type: Prep Ba	SPLF atch: 4 2ed 13:12 atrol S SPLF atch: 4	P West 00945 Dil Fac 1 ample P West 00945
Lab Sample ID: MB 580-400071/21-E Matrix: Solid Analysis Batch: 401081 Analyte E Lead Lab Sample ID: LCS 580-400071/22- Matrix: Solid Analysis Batch: 401081	MB Result ND	MB Qualifier	RL 0.0300 Spike Added	LCS Basulf	LCS	Cli	D ent	Pi 08/1 Sar	Pr repared 7/22 20:17 nple ID: Pr	Analyz 08/18/22 Lab Correp Type: Prep Ba %Rec	red 13:12 trol S SPLF spLF tch: 4	P West 00945 Dil Fac 1 ample P West 00945

Eurofins Calscience

1.035

mg/L

104

80 - 120

1.00

Method: 6010B - Metals (ICP)

Lab Sample ID: LCSD 580-400071/23-B Matrix: Solid			C	Client S	ample	ID: Lat F	o Control Prep Type	Sample : SPLP	e Dup West
Analysis Batch: 401081							Prep Ba	atch: 40	00945
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	1.00	1.051		mg/L		105	80 - 120	2	20

Prep Type

TCLP

Matrix

Solid

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

Client Sample ID

HAKA_BT_A

HAKA_BT_B

HAKA_BT_C

HAKA_BT_D

HAKA_BT_E

HAKA_BTPC_A

HAKA_BTPC_B

HAKA BTPC C

HAKA_BTPC_D

HAKA BTPC E

Lab Control Sample

Lab Control Sample Dup

Method Blank

HAKA BT AZ

Metals

Leach Batch: 255340

Lab Sample ID

570-105614-1

570-105614-2

570-105614-3

570-105614-4

570-105614-5

570-105614-6

570-105614-7

570-105614-8

570-105614-9

570-105614-10

570-105614-11

LB 570-255340/1-B

LCS 570-255340/2-B

LCSD 570-255340/3-B

Prep Batch: 255638

Job ID: 570-105614-1

Prep Batch

Method

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

1311

9 10 11 12 13

8

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	TCLP	Solid	3010A	255340
570-105614-2	HAKA_BT_AZ	TCLP	Solid	3010A	255340
570-105614-3	HAKA_BT_B	TCLP	Solid	3010A	255340
570-105614-4	HAKA_BT_C	TCLP	Solid	3010A	255340
570-105614-5	HAKA_BT_D	TCLP	Solid	3010A	255340
570-105614-6	HAKA_BT_E	TCLP	Solid	3010A	255340
570-105614-7	HAKA_BTPC_A	TCLP	Solid	3010A	255340
570-105614-8	HAKA_BTPC_B	TCLP	Solid	3010A	255340
570-105614-9	HAKA_BTPC_C	TCLP	Solid	3010A	255340
570-105614-10	HAKA_BTPC_D	TCLP	Solid	3010A	255340
570-105614-11	HAKA_BTPC_E	TCLP	Solid	3010A	255340
LB 570-255340/1-B	Method Blank	TCLP	Solid	3010A	255340
LCS 570-255340/2-B	Lab Control Sample	TCLP	Solid	3010A	255340
LCSD 570-255340/3-B	Lab Control Sample Dup	TCLP	Solid	3010A	255340

Analysis Batch: 255866

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	TCLP	Solid	6010B	255638
570-105614-2	HAKA_BT_AZ	TCLP	Solid	6010B	255638
570-105614-3	HAKA_BT_B	TCLP	Solid	6010B	255638
570-105614-4	HAKA_BT_C	TCLP	Solid	6010B	255638
570-105614-5	HAKA_BT_D	TCLP	Solid	6010B	255638
570-105614-6	HAKA_BT_E	TCLP	Solid	6010B	255638
570-105614-7	HAKA_BTPC_A	TCLP	Solid	6010B	255638
570-105614-8	HAKA_BTPC_B	TCLP	Solid	6010B	255638
570-105614-9	HAKA_BTPC_C	TCLP	Solid	6010B	255638
570-105614-10	HAKA_BTPC_D	TCLP	Solid	6010B	255638
570-105614-11	HAKA_BTPC_E	TCLP	Solid	6010B	255638
LB 570-255340/1-B	Method Blank	TCLP	Solid	6010B	255638
LCS 570-255340/2-B	Lab Control Sample	TCLP	Solid	6010B	255638
LCSD 570-255340/3-B	Lab Control Sample Dup	TCLP	Solid	6010B	255638

Metals	

ISM Prep Batch: 255881

ab Sample ID Client Sample ID		Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	Increment, Pre	0
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	Increment, Pre	o
Prep Batch: 256107					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	3050B	255881
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	3050B	255881
MB 570-256107/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 570-256107/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-256107/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
Analysis Batch: 2568	49				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	6010B	256107
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	6010B	256107
MB 570-256107/1-A	Method Blank	Total/NA	Solid	6010B	256107
LCS 570-256107/2-A	Lab Control Sample	Total/NA	Solid	6010B	256107
LCSD 570-256107/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	256107
_each Batch: 400071					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	SPLP West	Solid	1312	
MB 580-400071/21-B	Method Blank	SPLP West	Solid	1312	
LCS 580-400071/22-B	Lab Control Sample	SPLP West	Solid	1312	
LCSD 580-400071/23-B	Lab Control Sample Dup	SPLP West	Solid	1312	
Prep Batch: 400945					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	SPLP West	Solid	3010A	400071
MB 580-400071/21-B	Method Blank	SPLP West	Solid	3010A	400071
LCS 580-400071/22-B	Lab Control Sample	SPLP West	Solid	3010A	400071
LCSD 580-400071/23-B	Lab Control Sample Dup	SPLP West	Solid	3010A	400071
Analysis Batch: 4010	81				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
	HAKA BT A	SPLP West	Solid	6010B	400945
570-105614-1			0-11-1	6010B	400945
570-105614-1 MB 580-400071/21-B	Method Blank	SPLP West	Solid	0010B	-000-0
570-105614-1 MB 580-400071/21-B LCS 580-400071/22-B	Method Blank Lab Control Sample	SPLP West SPLP West	Solid	6010B	400945

Analysis Batch: 255207

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	Moisture - 2540	255507
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	Moisture - 2540	255507
570-105614-3	HAKA_BT_B	Total/NA	Solid	Moisture - 2540	255507
570-105614-4	HAKA_BT_C	Total/NA	Solid	Moisture - 2540	255507
570-105614-5	HAKA_BT_D	Total/NA	Solid	Moisture - 2540	255507
570-105614-6	HAKA_BT_E	Total/NA	Solid	Moisture - 2540	255507

QC Association Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

General Chemistry

ISM Prep Batch: 255507

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batch
570-105614-1	HAKA_BT_A	Total/NA	Solid	Increment,Prep
570-105614-2	HAKA_BT_AZ	Total/NA	Solid	Increment, Prep
570-105614-3	HAKA_BT_B	Total/NA	Solid	Increment, Prep
570-105614-4	HAKA_BT_C	Total/NA	Solid	Increment,Prep
570-105614-5	HAKA_BT_D	Total/NA	Solid	Increment, Prep
570-105614-6	HAKA_BT_E	Total/NA	Solid	Increment, Prep

Job ID: 570-105614-1

Lab Sample ID: 570-105614-1 Matrix: Solid

Lab Sample ID: 570-105614-2

Lab Sample ID: 570-105614-3

Matrix: Solid

Matrix: Solid

Client Sample ID: HAKA_BT_A Date Collected: 07/28/22 13:30 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			1.0 g	1.0 mL	400071	08/10/22 14:13	JLS	EET SEA
SPLP West	Prep	3010A			50 mL	50 mL	400945	08/17/22 20:17	JLS	EET SEA
SPLP West	Analysis	6010B		1			401081	08/18/22 14:53	ТМН	EET SEA
	Instrument	ID: TAC047								
TCLP	Leach	1311			100.05 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:26	VZ0K	EET CAL 4
	Instrument	ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255881	08/10/22 15:19	KZX6	EET CAL 4
Total/NA	Prep	3050B			10 g	500 mL	256107	08/11/22 12:59	CS5Z	EET CAL 4
Total/NA	Analysis	6010B		10			256849	08/15/22 16:37	VZ0K	EET CAL 4
	Instrument	ID: ICP10								
Total/NA	ISM Prep	Increment,Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrument	ID: BAL62								

Client Sample ID: HAKA_BT_AZ Date Collected: 07/28/22 13:35 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.05 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:28	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255881	08/10/22 15:19	KZX6	EET CAL 4
Total/NA	Prep	3050B			10 g	500 mL	256107	08/11/22 12:59	CS5Z	EET CAL 4
Total/NA	Analysis	6010B		10			256849	08/15/22 16:40	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrumen	t ID [.] BAI 62								

Client Sample ID: HAKA BT B Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.05 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:31	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrumen	t ID: BAL62								

Eurofins Calscience

Client Sample ID: HAKA_BT_C Date Collected: 07/28/22 13:45 Date Received: 08/05/22 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.01 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:33	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								
Total/NA	ISM Prep	Increment,Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4

Instrument ID: BAL62

Client Sample ID: HAKA BT D Date Collected: 07/28/22 13:50 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.04 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:36	VZ0K	EET CAL 4
	Instrumen	t ID: ICP10								
Total/NA	ISM Prep	Increment, Prep					255507	08/09/22 13:30	KZX6	EET CAL 4
Total/NA	Analysis	Moisture - 2540		1			255207	08/09/22 16:00	B4QL	EET CAL 4
	Instrumen	t ID: BAL62								

Client Sample ID: HAKA_BT_E Date Collected: 07/28/22 13:55 Date Received: 08/05/22 09:40

Prep Type TCLP TCLP TCLP TCLP	Batch Type Leach Prep Analysis Instrumen	Batch Method 1311 3010A 6010B t ID: ICP10	Run	Dil Factor	Initial Amount 100.02 g 5 mL	Final Amount 2000 mL 50 mL	Batch Number 255340 255638 255866	Prepared or Analyzed 08/08/22 23:00 08/09/22 20:18 08/10/22 14:38	Analyst XBO9 ECX6 VZ0K	EET CAL 4 EET CAL 4 EET CAL 4 EET CAL 4
Total/NA Total/NA	ISM Prep Analysis Instrumen	Increment,Prep Moisture - 2540 t ID: BAL62		1			255507 255207	08/09/22 13:30 08/09/22 16:00	KZX6 B4QL	EET CAL 4 EET CAL 4

Client Sample ID: HAKA_BTPC_A Date Collected: 07/28/22 15:25 Date Received: 08/05/22 09:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.04 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:40	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

Eurofins Calscience

Job ID: 570-105614-1

Lab Sample ID: 570-105614-4 Matrix: Solid

Lab Sample ID: 570-105614-5

Lab Sample ID: 570-105614-6 Matrix: Solid

Lab Sample ID: 570-105614-7

Matrix: Solid

Matrix: Solid

8/19/2022

Client Sample ID: HAKA_BTPC_B Date Collected: 07/28/22 15:30 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.06 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:43	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

Client Sample ID: HAKA_BTPC_C Date Collected: 07/28/22 15:35 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.06 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:45	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

Client Sample ID: HAKA_BTPC_D Date Collected: 07/28/22 15:40 Date Received: 08/05/22 09:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.03 g	2000 mL	255340	08/08/22 23:00	XBO9	EET CAL 4
TCLP	Prep	3010A			5 mL	50 mL	255638	08/09/22 20:18	ECX6	EET CAL 4
TCLP	Analysis	6010B		1			255866	08/10/22 14:48	VZ0K	EET CAL 4
	Instrumer	nt ID: ICP10								

1

Client Sample ID: HAKA_BTPC_E Date Collected: 07/28/22 15:45 Date Received: 08/05/22 09:40

Analysis

6010B

Instrument ID: ICP10

Batch Batch Dil Initial Final Batch Prepared Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Leach 1311 100.05 g 2000 mL 255340 08/08/22 23:00 XBO9 EET CAL 4 Prep 3010A 5 mL 50 mL 255638 08/09/22 20:18 ECX6 EET CAL 4

255866

Completion dates and times are reported or not reported per method requirements or individual lab discretion.

Laboratory References:

Prep Type

TCLP

TCLP

TCLP

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Matrix: Solid

Matrix: Solid

Matrix: Solid

EET CAL 4

Lab Sample ID: 570-105614-8 Matrix: Solid

Lab Sample ID: 570-105614-9

Lab Sample ID: 570-105614-10

Lab Sample ID: 570-105614-11

08/10/22 14:55 VZ0K

Accreditation/Certification Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

10

Laboratory: Eurofins Calscience The accreditations/certifications listed below are applicable to this report. Authority Program **Identification Number Expiration Date** Oregon NELAP 4175 02-02-23 5 Laboratory: Eurofins Seattle The accreditations/certifications listed below are applicable to this report. Identification Number Authority **Expiration Date** Program Oregon NELAP 4167 07-08-23

Method Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	EET CAL 4
6010B	Metals (ICP)	SW846	EET SEA
Moisture - 2540	Percent Moisture	SM	EET CAL 4
1311	TCLP Extraction	SW846	EET CAL 4
1312	SPLP Extraction	SW846	EET SEA
3010A	Preparation, Total Metals	SW846	EET CAL 4
3010A	Preparation, Total Metals	SW846	EET SEA
3050B	Preparation, Metals	SW846	EET CAL 4
Increment, Prep	ISM - Dry, Disaggregate, Sieve, Split,	EPA	EET CAL 4
Increment, Prep	ISM - As Received, Disaggregate, Split	EPA	EET CAL 4

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CAL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Sample Summary

Client: Kealamahi Pacific Consultants, LLC Project/Site: Hakalau Lead Assessment Job ID: 570-105614-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-105614-1	HAKA BT A	Solid	07/28/22 13:30	08/05/22 09:40
570-105614-2	HAKA_BT_AZ	Solid	07/28/22 13:35	08/05/22 09:40
570-105614-3	HAKA_BT_B	Solid	07/28/22 13:45	08/05/22 09:40
570-105614-4	HAKA_BT_C	Solid	07/28/22 13:45	08/05/22 09:40
570-105614-5	HAKA_BT_D	Solid	07/28/22 13:50	08/05/22 09:40
570-105614-6	HAKA_BT_E	Solid	07/28/22 13:55	08/05/22 09:40
570-105614-7	HAKA_BTPC_A	Solid	07/28/22 15:25	08/05/22 09:40
570-105614-8	HAKA_BTPC_B	Solid	07/28/22 15:30	08/05/22 09:40
570-105614-9	HAKA_BTPC_C	Solid	07/28/22 15:35	08/05/22 09:40
570-105614-10	HAKA_BTPC_D	Solid	07/28/22 15:40	08/05/22 09:40
570-105614-11	HAKA_BTPC_E	Solid	07/28/22 15:45	08/05/22 09:40

Eurofins Calscience Irvine				:	1501
Tustin CA 92780 Phone (949) 261-1022 Fax (949) 260-3297	Chain of	Custody Rec	ord	Ş.	CUrotins Calscience
Client Information	Sampler Scott MUNUNION	Lab PM	n' Chavel	Carrier Tracking No(s): C	DC No: 40-17997332609 1
Contain Commany	Phone: 805 236 0222	E-Mail:	NOVEN LARBORINE 110	- <u>Ja</u>	ige: age 1 of 1
Realements Realize Consultants	12, U.C.		Analysis Rec	juested	#.0
and the Kill St. St RGOI	Due Date Requested [.]				eservation Codes:
State Zip: 1 / Ut.	TAT Requested (days)				- HCL M - Hexane - NaOH N - Nane - Nore
Phone:	P0#;				4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Email: 200 200 200 Email: 200 200 200 200 200 200 200 200 200 20	WO #:				24 Dodecahydrate
Project Name	Project #	10 59)	(0N 10)	570-105614 Chain of Custody	A A
The transmit that the second ment	SSOW#:) əjdü	с 		ر (specity) her:
			7J	at of	
Sample Identific _{artion}	Sample (C=	mple Matrix		dmpV ist	
Pa		grab) BT=Tiesue, A=Air) IL reservation Code: X			Special Instructions/Note:
BULAUA DT A					
Nither BT AL			*/ × × ×		
WHARA BT B			XX		
1 1444 BT C					
THEY BT - N) ((4)				
LTNAM DOT E			γ		
THAT OF PO - A	5 27				
HARA - 07PC 3					
LITT BIPC-C					
THUR BIR J	L C				
Possible Hazard Identification	1 1547				
Non-Hazard Thammable Skin Irritant Pois	ison B Unknown Radii	ological	Sample Disposal (A fee may be a	issessed if samples are retained l	(onger than 1 month) Ear
Emission requested 1, If III IV, Other (specify)			Special Instructions/QC Requireme	nts.	
Emply Kit Reinquished by Reinnuished by	Date	Tin	le.	Method of Shipranent	فبمعشور بدعواتهم أندورهما عديكانين المتباعك والشياقة والخديك مجافيها تباركم المراكب المركب
Relinuished by	Date/Time:	Сотралу	Received by	Date Time:	LAUD Company K
Rettonished hw	Date/Time:	Company	Received by	Date /Time:	Company
5 1196	Date/Time:	Company	Received by	Datter	Company
New of years Intact Custody Seal No D∆ Yes ∧ No C			Cooler Temperature(s) °C and Other R	emarks. $\Im Q 0 9$	21/6-0
			12 13 14	8 9 10	Sc 1 4 4 2 2

e	0
2	9
Ð	te.
៊ូ	Sui
5	a)
ů	D
~	ş
č	2
Ĕ	õ
2	÷
	25

	Environment Testing	America
- eurofins		

Eurofins Calscience									🖒 eurofins	
2841 Dow Avenue, Suite 100	บี	lain of	f Custo	ody Rec	ord				8	Environment Testing America
Tustin CA 92780 Phone 714-895-5494										
Client Information (Sub Contract Lab)	Sampler			Lab PM Chang, T	erri		Carrier Tracking	No(s)	COC № 570-182827 1	
Client Contact: Shipping/Receiving	Phone:			E-Mail ⁻ Terri Cha	ng@et.eurofi	nsus.com	State of Origin. Hawaii		Page Page 1 of 1	
Company Eurofins Environment Testing Northwest				Accr	editations Require AP - Oregon.	ed (See note). State - Hawaii			Job #: 570-105614-1	
Address. 5.755. Bh. Street East	Due Date Requested. 8/17/2022)	Analvsi	s Requested		Preservation Co	des. M - Hexane
City of our ender	TAT Requested (days)								A HCL B - NaOH C - Zn Acetate	N - None O AsNaO2
State Zir WA, 98424									D - Nitric Acid E - NaHSO4	Р - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone: 253-922-2310(Tel)	PO#			(0					F - MECH G - Amchlor H Ascorbic Acid	S - H2SO4 T TSP Dodecahydrate
Email	WO #:			or N	(on			12	- Ice J - Di Water	U - MCAA W - PH 4-5
Project Name: Hakalau Lead Assessment	Project #: 57002418			sə <u>)</u> э	P Lead			ənlistn	N-EUA L-EDA	Y Trizma Z - other (specify)
Site:	SSOW#,			dweg	142 M	*********		01 CO	Other ⁻	
	<u></u>	ample (Sample Type C=comp,	Matrix (w=water S=solid, D=waste/oli, eld	W.SN (1001)			nədmuk letc		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	S=grab) 87-	Tissue, A=Air) IL	09			<u>""</u>	Special I	nstructions/Note.
	$\left(\right)$	13 20	Preservatio							
HAKA_BT_A (570-105614-1)	7/28/22 H	awaijan		Solid	×			-		
Note: Since laboratory accreditations are subject to change, Eurofins Calscience p maintain accreditation in the State of Origin listed above for analysis/trests/mathX b attention immediately If all requested accreditations are current to date, return the	places the ownership of m being analyzed, the samp he signed Chain of Custod	nethod analyt les must be s y attesting to	e & accreditation hipped back to said complican	on compliance upo the Eurofins Calsi ce to Eurofins Cal	in out subcontrac sience laboratory science.	t laboratories. This or other instruction	sample shipment is forv s will be provided. Any c	rarded under chain-of- hanges to accreditatio	custody lif the labora n status should be bri	tory does not currently ought to Eurofins Calscience
Possible Hazard Identification					sample Dispo	sal (A fee ma	y be assessed if s	amples are retain	ed longer than	1 month)
Uncommed Deliverable Requested 1 II, III, IV, Other (specify)	Primary Deliverable	e Rank: 2			special Instruction	ro crient ctions/QC Requ	irements			SUITOM
Emply Rth Relinquished by	Da	te.		Tim	ö		Method of	Shipment:		
Relinquished by	Date/Time:	176	° C	TT ()	Received by			Date/Time:		Company
Relimination by	Date/Time:	- 	8	mpany	Received by			Date/Time:		Company
Relinquished by	Date/Time:		<u></u>	mpany	Received by			Date/Time:		Company

Custody Seal No

Custody Seals Intact: ∆ Yes ∆ No

Ver 06/08/2021

Cooler Temperature(s) °C and Other Remarks.

Eurofins Calscience

Securofins Environment Testing America

2841 Dow Avenue, Suite 100 Tustin, CA 92780 Phone: 714-895-5494

Phone: 714-895-5494	Samoler			Lab PN	4:								Сапі	er Tra	icking	No(s):			COC N):			
Client Information (Sub Contract Lab)				Chan	g, Te	erri							Flata							570-1	32827.1			
Client Contact	Phone:			E-Mail: Terri.(Char	ng@e	et.eur	ofins	us.co	m			Haw	vaii	ngan:					Page	1 of 1			
Shipping/Receiving	1				Accred	ditation	ns Req	uired	(See n	ote):										Job #:	05614 1			
Eurofins Environment Testing Northwest,					NEL	AP - (Orego	on; S	tate -	Haw	aıı									Preser	vation C	odes:		
Address: 5755 8th Street East	8/17/2022	eo:							A	naly	sis	Req	ues	sted	1		_		5205	A - HC	L	M-H∂ N-N	exane	
City:	TAT Requested (d	ays):																		8 - Na()H Acetate	0 - A	sNaO2	
Tacoma																				D - Nitr	ic Acid	P - Na Q - N	a2SO3	
State, Zip: WA, 98424									Ì											F - Me	DH	R - N S - H	∋2S2O3 2SO4	
Phone:	PO #:				_		1													G - Am H - Asc	chlor orbic Acid	T - TS U - Ar	3P Dodece cetone	ahydrate
253-922-2310(16) Email:	WO #:				Ž ,				ļ											I-lce J-DIV	Vater	V - M	CAA	
	Project #				es v	Ţ													iner	K - ED	ΓA λ	Y - Tr	izma	
Project Name: Hakalau Lead Assessment	57002418														Ì				onta	Other		Z - ott	her (specif	.fy)
Site:	SSOW#:					ldS I													õ					
		T		4	S Da	3	1										1		ber					
			Sample We	water,	a Iter	1312													Num					
		Sample	(C=Comp, Oews	ata/oil,	Pa da	108/													otal		Snacial	Instruc	tions/Nr	ote:
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) BT=Tiss	ue, A=Air)	Ĩ	<u> </u> "							035		1.55				Ň		Special			
		13:30	rieselvalion c	-11-1	¥	N-	9 8888 9	1 0 2 2 7	C 265-87	2.4993	97970	100200	1995421		1 100			1	Ť,					
HAKA_BT_A (570-105614-1)	7/28/22	Hawaiian	3		_	<u>_</u>	+	. 	-													. 		
						_			Ļ					ļ	_									
······································		1						1									Τ	٦.				~ *	-	
						+-			1				 [The	m	ID:_	R	80	or:	<u> </u>	_° Uno	-2	<u> </u>	
								+		<u> </u>			- (Cool	ler l	Dsc:	SE	<u> </u>		j	edEx:	Pe	 	
							<u> </u>	<u> </u>					_ 1	Pack	ang	;	51	n/		I	CPS:			
													_ (Cus	t. Se	eal:	l'es_	<u> </u>	0 <u></u> Vone]	Lab Cot Othery	ır:		
							Τ]	Blue	e Ice	², [¹	et, D	ну, .	NULL		Juici			
					+		┼┈	1					_	Į	I	1	1	1	133	N				
]	ll.		1.					<u>}</u>			-	l	1			or cha	uin-of-r	il	If the laho	atory doe	s not curre	entiv
Note: Since laboratory accreditations are subject to change, Eurofins Calscience	places the ownership being analyzed, the s	of method, an amples must b	alyte & accreditation c e shipped back to the	ompliance Eurofins (e upon Calscii	n out si ence ia	aborate	ractia ory or i	other i	nes. Instruct	ions v	vill be	provio	ded.	s ion Any c	chang	es to :	accred	ditation	n status s	hould be b	rought to	Eurofins C	Calscience
attention immediately. If all requested accreditations are current to date, return the	e signed Chain of Cu	istody attesting	to said complicance t	o Eurofins	: Cals	cience																4	46.5	
Possible Hazard Identification					s	ampl	e Dis	posi	ai (A	fee I	nay I	be a:	sses	sed	if s	amp	ies a	are re	etain	ea long	jer tnan	1 mont	nj onthe	
Unconfirmed					-		Retur	n To	Clien	nt IC Re	-	— D	ispo te	sal E	By L	ab			Arci	nive Foi			Julis	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		Ľ	pecia		i actic	113/0															
Empty Kit Relinquished by		Date:			Time	e:	<u></u>	·						Meth	hod of	t Ship	ment:					ICom	0.00/	
Reliquished by	Date/Time:	~ 1	700 Compa			Reg	teivied	r V	1									21	22	~	0SU	$\int \mathcal{L}$	2TA	J
Romination with the las	Date/Time:	<u>~ 1</u>	Compa	iny		R	Lived.	by: (<u>,</u>							Dat	e/Tim	e:				Comp	Jany	
	1					Pe	aivor	bic								Dat	e/Tim	e:				Comr	pany	
Relinquished by:	Date/Time:		Compa	uny		rteo	.eivea	uy.																
Custody Seals Intact: Custody Seal No.:	The second second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			· · .	Cod	oler Te	mpera	iture(s)	°C ar	d Oth	er Rer	narks	s: •			1 N	· · ·				·	a tang	
Δ Yes Δ No																						Ver:	06/08/20	021

Login Number: 105614 List Number: 1 Creator: Patel, Jayesh

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-105614-1

List Source: Eurofins Calscience

Login Number: 105614 List Number: 2 Creator: Holdener, Heather D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	IR8 3.1/2.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-105614-1

List Source: Eurofins Seattle

List Creation: 08/12/22 12:11 PM

APPENDIX B:

Synthetic Precipitation Leaching Procedure Batch Test Leaching Method Results

This page was intentionally left blank.

Batch Test Leaching Model Version: Fall 2017Hawai'i Department of Health Hazard Evaluation and Emergency Response Office

-Refer to accompanying technical memorandum for background and use of this spreadsheet (HDOH 2017).

-Physiochemical constants updated in Fall 2017 (refer to HDOH 2017).

-Spreadsheet calculates Kd desorption coefficient based on input contaminant concentration in soil and Batch Test data.

-Correlative concentration of contaminant in leachate calculated based on estimated Kd value (may differ from batch test data).

-Future impacts to groundwater estimated using simple groundwater/leachate dilution factor.

-Alternative model based on soil gas data provided in accompanying worksheet.

-Possibility of past impacts to groundwater not considered and must be evaluated separately.

-Check to ensure that this is an up-to-date version of the spreadsheet.

-Remove write protection if problems occur in selection of contaminant. Password to unprotect worksheet is "EAL" (under Tools menu).

STEPS:

- 1. Select chemical from pulldown list (unlisted chemicals unprotect spreadsheet and input chemical name and chemical constants).
- 2. Input total contaminant concentration and SPLP (or other applicable batch test) concentration.
- 3. Input sample properties. Use default values if sample-specific data are not available.
- 4. Input Batch Test method information. Default SPLP method parameter values noted.
- 5. Input groundwater:leachate dilution factor (DF of 1.0 = no dilution; USEPA default = 20, USEPA 2002).
- 6. Input target groundwater action level for comparison to model calculation of groundwater impacts (optional).
- 7. Input chemical-specific Henry's Law Constant (Kh) and solubility if "Generic (Volatile)" or "Generic (Nonvolatile)" selected from pulldown list. Input "0" if values not available.
- 8. Spreadsheet calculates sample-specific Kd value and dissolved-phase concentration of contaminant in saturated sample.
- 9. Spreadsheet calculates concentration of contaminant in groundwater following impact by leachate.

Step 1: ¹⁰ Select Contaminant (use pulldown list)			LEAD			
Step 2: Input Sample Data	DEFAULT	INPUT	³ Step 5: Input Groundwater/	DEFAULT	INPUT	
¹ Concentration in soil sample (mg/kg)	N/A	1.1E+04	Leachate Dilution Factor	20	20	
¹ Concentration in Batch Test solution (ug/L)	N/A	4.3E+03	⁴ Step 6 (optional): Input Target Gr	oundwater		
Step 3: Input Sample Properties (⁵ USEPA soil default	s noted)		Concentration (ug/L)			
Sample density (g/cm³)	1.50	1.50	Model Res	ults		
Particle density (g/cm ³)	2.65	2.65	⁵ Kd partition Coefficient (cm ³ /g):		2.5E+03	
Fraction air-filled porosity (assume saturated soil)	0.00	0.00	⁶ Estimated Concentration in			
Step 4: Batch Test Method Data (SPLP defaults noted)		Source Area Leachate (ug/L):		-	
² Batch Test Solution Volume (ml):	2,000	2,000	⁷ Estimated Concentration in			
² Batch Test Solution Density (g/cm ³):	1.0	1.0	Groundwater (ug/L):		-	
² Batch Test Sample Weight (grams)	100	100				

Step 7: ¹⁰ Chemical Constants [Generic Chemical only	/]

Calculations:			
Sample porosity - total	0.43		
Sample porosity - air-filled	0.00		
Sample porosity - water-filled	0.43		
Batch Test Solution Mass (grams)	2.0E+03		
Batch Test Sample Mass (grams)	1.0E+02		
Sample Mass:Solution Mass Ratio (gm/gm)	5.0E-02		
Total Mass of Contaminant (ug)	1.1E+06		
Mass Contaminant in Batch Test Solution (ug)	8.6E+03		
Mass Contaminant Sorbed to Soil (ug)	1.1E+06		
Concentration Sorbed (ug/kg)	1.1E+07		
Batch Test Percent Solid Phase	99.2%		
Batch Test Percent Dissolved Phase	0.8%		
Batch Test Solid-Phase Contaminant Conc. (mg/kg)	1.1E+04		
Batch Test Solution Contaminant Conc. (ug/L)	4.3E+03		

Kd >20. Contaminant not significantly mobile for concentration and soil type tested. Do not place below water table without further evaluation. Address other potential environmental concerns as needed (direct exposure, gross contamination, etc.).

Notes (refer also to accompanying memo).

 Total contaminant concentration measured in soil sample and results of Batch Test analysis (e.g., SPLP). Hawai'i DOH Fall 2011

- 2. Batch Test: Default SPLP method calls for 100 grams of sample and 2 liters of solution with a density of approximately 1.0
- 3. Site-specific or default groundwater/leachate dilution factor (default = 20, USEPA 2002).
- 4. Target groundwater action level. Refer to HDOH EAL document and appropriate groundwater category.
- 5. Partition Coefficient (Kd) = Concentration_{sorbed}/Concentration_{solution} (after Roy et al 1992).
- Partition Coefficient units in L/Kg [(ug/Kg)/ug/L)] or cm³/g [(ug/g)/ug/cm³)]
- 6. Estimated dissolved-phase concentration of contaminant in saturated sample based on calculated partition coefficient Kd contaminant concentration in leachate during transport through vadose zone not considered. Refer to Tier 2 concentration
- 8. Caution Message: A caution message will appear if the input batch test concentration is greater than 75% of the assumed contaminant solubility and a Kd value will not be generated (refer to "Leaching Evaluation of Heavily Contaminated Soils" in text). Model assumes that free product is present in the batch test solution and a Kd cannot be calculated (see text).
- 9. Error Message: The batch test data are not valid if the contaminant mass calculated for solute exceeds total mass calculated for sample (based on sample mass and input total contaminant concentration). This may not be uncommon given the potential for lab error at very low concentrations of contaminants.
- 10."GENERIC CHEMICAL" can be selected from pulldown menu an used to model of any chemical, including chemicals not listed. Selection requires input of Kh (atm m3/mole) and Solubility constants in Step 7 if available. Note that a chemicals physiochemical constants affect results for VOCs only if input Fraction Air-Filled Porosity is >0% (model considers partitioning into pore space air for VOCs as well as leachate).

References:

HDOH, 2017, Use of laboratory batch tests to evaluate potential leaching of contaminants from soil (updated Fall 2017): Hawai'i Dept. of Health, Hazard Evaluation and Emergency Response, http://hawaii.gov/health/environmental/hazard/index.html

HDOH, 2017, Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater: Hawai'i Department of Health, Office of Hazard Evaluation and Emergency Response, Fall 2017, www.hawaii.gov/health/environmental/hazard/eal2005.html.

USEPA, 1994, Synthetic Precipitation Leaching Procedure: U.S. Environmental Protection Agency, Office of Solid Waste, SW-846 Method 1312, September 1994, www.epa.gov/epaoswer/hazwaste/test/main.htm.

USEPA, 1999, Understanding Variation in Partition Coefficient, Kd, Values: Office of Air and Radiation, August 1999, EPA/402/R/99/004A, http://www.epa.gov/radiation/docs/kdreport/

USEPA, 2002, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites: U.S. Environmental Protection Agency, Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002, http://www.epa.gov/superfund/resources/soil/ssg_main.pdf

APPENDIX C:

Applicable or Relevant and Appropriate Requirements (ARARs) and To-Be-Considered (TBC) Criteria

This page was intentionally left blank.

Appendix C: Preliminary Applicable or Relevant and Appropriate Requirements (ARAR) and Guidance to be Considered.

Requirement	Citation	Description	Governmental Authority	ARAR/TBC Information Type	Applicability to Site	Determination	
Removal or Remedial A	ction						
EPA RSLs	EPA RSL Tables (November 2019)	Predetermined risk-based criteria used as a screening tool to determine the presence of pollutants, trigger investigation, and identify initial cleanup goals.	Federal	Chemical-Specific	Lead is present in site soil at concentrations exceeding EPA RSLs for residential land use.	TBC Information. EPA RSLs are not promulgated.	
HDOH EALs	HDOH EAL Tables (November 2017)	Predetermined risk-based criteria used as a screening tool to determine the presence of pollutants, trigger investigation, and identify initial cleanup goals.	State	Chemical-Specific	Lead is present in site soil at concentrations exceeding HDOH EALs.	TBC Information. HDOH EALs are not promulgated. Relevant to lead as the state recommended clean-up levels for parks is more stringent than the RSLs for residential land use.	
Excavation and/or Earth	Moving Activities						
Discharge of Dredged or Fill Material to Waters of the U.S.	33 use§ 1344; CWA § 404; 33 USC§ 1311(a)	Requires permits for the discharge of dredged or fill materials to into waters of the United States, including wetlands.	Federal	Action-Specific	The site is adjacent to Kolekole Stream.	Potentially relevant and appropriate. The site is adjacent to Kolekole Stream. The National Wetland Inventory classifies the stream channel and banks as riverine upper perennial, unconsolidated bottom, permanently flooded. If a survey determines that the wetland is jurisdictional, then compliance with the substantive requirements of the CWA and § 404 Permit process may be required for any response action that includes excavation of soil and installation of clean fill material in the wetland area.	
Coastal Zones	HRS Title 13, Chapter 205A: Coastal Zone Management. S	Provides for the protection of coastal resources.	State	Location-Specific	The majority of the site is located within a Special Management Area as designated by the State of Hawaii.	Potentially applicable. Excavation activities that alter coastal vegetation and landforms will comply with substantive requirements to minimize effects on coastal resources.	
Coastal Zones	16 USC §-1455 (c); 15 CFR § 930.30-33, 36(a}, and 39(b-d)	Requires federal actions or activities conducted within or affecting a coastal zone be consistent with the State's coastal program. Also requires protection of valuable coastal ecosystems and minimization of adverse impacts on coastal ecosystems.	Federal	Location-Specific	The majority of the site falls within a Special Management Area as designated by the State of Hawaii.	Potentially applicable. The selected response action will comply with this regulation because the site location is within the coastal zone.	
NPDES	CWA§ 402; 33 USC§ 1311(a): 40 CFR Parts 122 and 125	Regulates the discharge of treated effluent and storm water runoff to waters of the United States.	Federal	Action-Specific	The site is adjacent to Kolekole Stream.	Applicable if the selected response action disturbs more than 1 acre (Current potential remedial action area is more than 1 acre). Response activities will comply with the ARARs to prevent discharge to the adjacent stream. BMPs will be implemented. Although administrative requirements do not qualify as ARARs , a stormwater pollution prevention plan will be prepared to demonstrate compliance with the substantive requirements of this regulation.	
Soil Erosion and Sediment Control, Grading Excavation, Clearing and Grubbing.	HRS Title 12, Chapter 180C, Soil Erosion and Sediment Control. Hawaii County Code (1983, 2016 Amended) Chapter 10, Section 10- 26	Regulates grading, excavation, clearing and grubbing activities for management of soil erosion and sediment control.	State County	Action-Specific	Response actions that include grading or excavation.	Applicable. Any grading, grubbing, stockpiling activities will require a permit and BMPs to manage soil erosion and sediment control. Any removed vegetation should not be stored along the banks of Kolekole Stream. Grading activities will result in positive drainage to prevent the accumulation or retention of surface water in depressions. Hazardous conditions will not be created by fill.	

Appendix C: Preliminary Applicable or Relevant and Appropriate Requirements (ARAR) and Guidance to be Considered.

Requirement	Citation	Description	Governmental Authority	ARAR/TBC Information Type	Applicability to Site	Determination					
Excavation and/or Earth Moving Activities (continued)											
Control of Fugitive Dust	HRS 19 342B-11; 34 HAR Title 11, Chapter 60.1-33: Air Pollution Control	Requires mitigation of fugitive dust visible beyond the property line through implementation of best practical operation or treatment.	State	Action-Specific	Response actions that include grading or excavation.	Potentially applicable. Response actions will not cause or permit the discharge of visible fugitive dust beyond the site perimeter. Dust may be controlled by screen or limited application of water spraying over disturbed area to prevent the discharge of fugitive dust. Runoff from dust control is not permitted.					
Control of Noise	HRS Title 19, Chapter 342F-30; HAR Title 11, Chapter 46: Noise Pollution Control	Defines maximum permissible sound levels to prevent, control, and abate noise pollution from stationary noise sources and equipment related to agricultural, construction, and industrial activities.	State	Action-Specific	Response actions that include the use of heavy machinery and trucks.	Potentially applicable. Response actions will not cause excessive noise beyond the exclusion zone outside of the hours of 0700 and 2200. Permissible sound outside of the exclusion zone for multifamily residential, commercial, and resort areas shall not exceed 60 decibels. Outside of the hours of 0700 and 2200, permissible sound levels shall not exceed 50 decibels. Site is located within an isolated gulch. Residential housing is above the site.					
Waste Disposal		•									
Identification of Hazardous Waste	40 CFR Part 261	Identifies solid wastes subject to regulation as hazardous wastes under RCRA. Identifies chemical characteristics of hazardous waste for comparison with site-specific waste data.	Federal	Chemical-Specific	Lead is present in site soil.	Potentially applicable for excavation activities because the regulation establishes procedures and numeric limits for the identification and management of listed and characteristic hazardous waste. Sample results in the bridge area are below the US EPA TCLP standard for Hazardous Waste.					
Storage, Handling, and Pre-Transportation Requirements for Hazardous Waste	40 CFR Part 262	Specifies hazardous waste storage, handling, labeling, record keeping,manifesting, and all pre-transport requirements.	Federal	Action-Specific	Lead is present in site soil.	Potentially Applicable for excavation activities because the regulation establishes procedures for the storing and handling listed and characteristic hazardous waste. However, sample results from the DUs in the bridge area below the standards for TCLP identified hazardous waste.					
Conservation and Protect	ction of Ecological and Cultural R	esources									
Migratory Bird Treaty Act	16 USC § 703(a)	Prohibits the taking, possessing, buying, selling, or bartering of any migratory bird, including feathers or other parts, nest eggs, or products, except as allowed by regulations.	Federal	Location-Specific	Potential for migratory birds to loaf/nest on site.	Potentially applicable. Survey site and follow guidelines for disturbance of migratory bird species. Potential for habitat for the indigenous Black- crowned Night-Heron (Nycticorax nycticorax) based on Kapue Bridge Survey (AECOS, 2018).					
Native American Graves Protection and Repatriation Regulations	43 CFR 10, § 3c and 3d	Requires coordination with Native Hawaiian organization to determine disposition of human remains and cultural artifacts. Requires protection of said items when	Federal	Location-Specific	No identified archaeological sites. Additional review will be conducted. Site has been highly disturbed due to bridge construction, tsunami impacts, and flooding.	Potentially relevant and appropriate. Comply with substantive requirements excavation, removal. And preservation of human remains and artifacts if selected response action includes excavation and human remains, burial sites, or cultural artifacts are encountered.					

Appendix C: Preliminary Applicable or Relevant and Appropriate Requirements (ARAR) and Guidance to be Considered.

Requirement	Citation	Description	Governmental Authority	ARAR/TBC Information Type	Applicability to Site	Determination				
Conservation and Protection of Ecological and Cultural Resources (continued)										
Burial Sites and Human Remains	HAR Title 13, Chapter 300: Rules of Practice and Procedures Relating to Burial Sites and Human Remains	Governs practices and procedures relating to the proper care and protection of burial sites and human skeletal remains 50 years or older.	State	Location-Specific		Potentially applicable. Comply with the substantive requirements for the excavation, removal, and preservation of humans remains if selected response action includes excavation and human remains or burial sites are encountered.				
Protection of Archaeological Resources	43 CFR § 7.4(a) and 7.5(b)(1)	Requires protection of archaeological resources if discovered.	Federal	Location-Specific		Potentially applicable. Comply with substantive requirements to prevent irreparable damage to or destruction of human remains and artifacts and to preserve archaeological and scientific data if selected response action includes excavation and human remains, burial sites, or cultural artifacts are encountered.				
National Archaeological and Historical Preservation Act; National Historic Preservation Act	16 USC 469; 16 USC§ 470; 36 CFR Part 800	Alteration of terrain that threatens significant scientific, prehistoric, historic, or archeological data may require actions to recover and preserve artifacts. Includes coordination with federal and state officials to determine proposed site activities have the potential to cause adverse effects on historic properties.	Federal	Action-Specific and Location-Specific		Potentially applicable. Comply with the substantive requirements to provide for data recovery and preservation activities if selected response action includes terrain alterations that result in irreparable loss or destruction of significant scientific, prehistoric, historical, or archaeological data.				
Historic Preservation	HRS Chapter 6E.	Requires action to be taken to locate, identify, evaluate, and protect cultural resources.	State	Location-Specific		Potentially applicable. Comply with substantive requirements to prevent the irreparable damage and destruction of human remains or artifacts and to preserve the archaeological and scientific data if selected response action includes excavation and human remains. burial sites, or cultural artifacts are encountered.				
Endangered Species Act	16 USC§ 1538(a)(1)(B); 50 CFR § 17.21	Requires action to conserve endangered or threatened species, including coordination with the Department of the Interior and the U.S. Fish and Wildlife Service.	Federal	Location-Specific	The site has potential habitat for the Hawaiian stilt (Himantopus mexicanus knudseni). Potential for Hawaiian Hoary bat (Aeorestes semotus), or Hawaian Hawk (Buteo solitarius), however no trees will be removed or disturbed during site work, minimizing potential impacts. Construction will take place during daylight hours and will not use nocturnal lights. Vegetation is non-native or common species and consists of maintained landscaping (grass).	Potentially relevant and appropriate. No designated critical habitat is at the site. Comply with requirements to protect RTE species and their habitat if documented or if they appear at the site.				

APPENDIX D:

REMEDIAL ALTERNATIVE COST COMPARISON

This page was intentionally left blank.

Appendix D-1: Rough Order of Magnitude Cost Comparison

Hakalau Beach Park Lead I	mpacted So	oil Remedia	al Alternative Ana	lysis										
Client: HDOT Phase		01 6a		6a		5a		5b		5c		6b		
Project: Hakalau Beach Park Remedial Alterntive Task:		Planning		Alternative A		Alternative B -		Alternative C		Alternative D		Alternative E		
Cilent: HDOT Phase Project: Hakalau Beach Park Remedial Alterntive Task: Location: Hakalau, Hawaii Billing Type:		Prase e Task: illing Type:	01 Planning Lump Sum Project Management, Permiting, Public Meeting Support - Assume all alternatives have a simmilar amount of planning effort and this cost would be in addition to each of the alternatives evaluated.		6a Alemative A Lump Sum No Action- Prepare EHMP and updated every 5 years. EHMP needed. Assume 4 updates per 30 year period accommodate park maintenance changes (re-construction EHMPs). Requires an annual inspection performed according to the EHMP and submitted to DOH.		 Sa Altemative B - Ump Sum Sold over All DUs which exceed the HDDH Tier 1 EAct over a second secon		5b Altemative C Lump Sum Soil Excavation, and Off-Site Disposalof all soil which exceeds the HDOH Tier 1 EAL for unrestricted land use for lead (200 mg/kg) Replace contaminated soil with clean fill. No EHMP needed. Assume miriafi/geotextile placed on contaimated soil, cover with 24-inches clean fill. Assume 300 additional cubic grading. Archeological Consultation and Monitoring.		5c Alternative D Lump Sum Soil Excavation and Off-Site Disposal greater than 800 mg/kg. IF pass the TCLP send to Wh5L Concentrations > 800 mg/kg that fail TCLP dispose of CONUS. Relace with clean fill. EHMP needed.Assume 4 updates per 30 year period accommodate park maintenance changes (Pre- construction EHMPs). Miriaf/geotextile placed as a barrier between clean fill and post excavation surface, replace volume removed from DUs cover all DUs with 24- inches clean fill. Annual inspection of soil cover. Assume 300 additional cubic yards clean soil for drainage		6b Altemative E Lump Sum Institional Controls- Prepare EHMP and updated every 5 years. Install a fence around all the areas at park that exceed construction/industrial use and only alow access to pavilions and shoreline areas. EHMP needed. Assume 4 updates per 30 year period accommodate park maintenance changes (Pre-construction EHMPs). Rrequires an annual cap inspection performed according to the EHMP and submitted to DOH.	
Scope of Work:	Task Title: k: Duration:			Graung. Archeological Consultation and Monitoring. 125 Days							20 Days			
	Loaded													
1a. Labor	Rate (\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
Principal	\$186.25	Hour	40	\$7,450.20	40	\$7,450.20	40	\$7,450.20	40	\$7,450.20	40	\$7,450.20	20	\$3,725.10
Project Manager	\$130.96	Hour	40	\$5,238.29	60	\$7,857.44	100	\$13,095.73	240	\$31,429.75	240	\$31,429.75	40	\$5,238.29
Senior Environmental Scientist	\$118.91	Hour	120	\$14,269.09	400	\$47,563.64								
Senior Project Scientist	\$119.59	Hour			400	\$47,837.56	400	\$47,837.56	400	\$47,837.56	400	\$47,837.56	400	\$47,837.56
Project Geologist	\$89.64	Hour							400	\$35,857.84	400	\$35,857.84		1
Project Geologist	\$96.00	Hour	120	\$11,520.00	200	\$19,200.00	420	\$40,320.00	1200	\$115,200.00	1000	\$96,000.00	200	\$19,200.00
Assistant Project Scientist	\$68.02	Hour												
Staff Geologist	\$62.58	Hour												
Construction Manager	\$142.89	Hour					368	\$52,582.71	448	\$64,013.73	180	\$25,719.80	160	\$22,862.05
Laborer	\$39.77	Hour												
Technical Editor	\$107.30	Hour	8	\$858.40	40	\$4,291.98	48	\$5,150.38	8	\$858.40	48	\$5,150.38	40	\$4,291.98
Word Processor	\$57.45	Hour	8	\$459.59	40	\$2,297.93	8	\$459.59	8	\$459.59	48	\$2,757.52	40	\$2,297.93
Senior CADD Operator	\$87.02	Hour	12	\$1,044.28	60	\$5,221.39	72	\$6,265.66	12	\$1,044.28	84	\$7,309.94	60	\$5,221.39
CADD Operator	\$69.74	Hour												
Project Administrator	\$66.18	Hour	40	\$2,647.18	40	\$2,647.18	40	\$2,647.18	40	\$2,647.18	40	\$2,647.18	40	\$2,647.18
Senior Project Accountant	\$86.26	Hour			80	\$6,901.07	80	\$6,901.07	80	\$6,901.07	80	\$6,901.07	80	\$6,901.07
		Subtotals	388	\$43,487.03	1360	\$151,268.39	1576	\$182,710.08	2876	\$313,699.60	2560	\$269,061.24	1080	\$120,222.55
1b. Subcontractor Labor	Loaded Rate (\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
Brush Clearing 1	\$29.48	hour		1 1		1	180	\$5,306.13	180	\$5,306.13	180	\$5,306.13	80	\$2,358.28
Brush Clearing 2	\$29.48	hour		1 1		İ	180	\$5,306.13	180	\$5,306.13	180	\$5,306.13	80	\$2,358.28
Brush Clearing 3	\$29.48	hour		1			180	\$5,306.13	180	\$5,306.13	180	\$5,306.13	80	\$2,358.28
Brush Clearing 4	\$29.48	hour					180	\$5,306.13	180	\$5,306.13	180	\$5,306.13	80	\$2,358.28
L		Subtotals	0	\$0.00	0	\$0.00	720	\$21,224.52	720	\$21,224.52	720	\$21,224.52	320	\$9,433.12
Appendix D-1: Rough Order of Magnitude Cost Comparison

Hakalau Beach Park Lead	Impacted Soil Remedial Alternative Analysis	

	inpublicu 00	D		19010	0.		5.		C 1		F -		01	
Client: HDO I Project: Hakalau Beach Park Reme	edial Alterntive	Phase Task:	01 Planning		6a Altemative A		5a Altemative B	-	ob Altemative C		oc Alternative D		ob Alternative E	
Location: Hakalau, Hawaii Billing Typ		lling Type:	Lump Sum		Lump Sum		Lump Sum		Lump Sum		Lump Sum		Lump Sum	
					No Action- Pr	epare EHMP	Soil Cover All	I DUs which	Soil Excavation	on, and Off-Site	Soil Excavation	on and Off-Site	Institional Cor	trols- Prepare
					and updated	every 5 years.	exceed the H	IDOH Tier 1 EAL	Disposalof all	soil which	Disposal grea	iter than 800	EHMP and up	dated every 5
							for unrestricte	ed land use for	exceeds the	HDOH Tier 1 EAL	mg/kg. IF pas	s the TCLP send	years. Install a	a fence around
					EHMP neede	d.	lead (200 mg	/kg). Annual	for unrestricte	ed land use for	to WHSL Con	centrations > 800	all the areas a	it park that
							inspection of	cover.	lead (200 mg	/kg) Replace	mg/kg that fa	il TCLP dispose of	exceed const	ruction/industrial
					Assume 4 up	dates per 30			contaminated	l soil with clean fill.	CONUS. Rela	ce with clean fill.	use and only	alow access to
					year period a	ccommodate	EHMP neede	ed.				4.4	pavilions and	shoreline areas.
					park mainten	ance changes	Acours 4	datas par 20 ver	NO EHMP ne	eaed.	EHMP neede	a.Assume 4		4
			Project Manageme	nt, Permiting,	(Pre-construc	tion EHMPS).	Assume 4 up	dates per 30 year	Accumo mirio	fi/gootoxtilo	updates per a	so year period	EHMP neede	3.
			Public Meeting Su	oport - Assume	Rrequires an	annual	maintenance	changes (Pre-	nlaced on co	ntaimated soil	maintenance	changes (Pre-	Assume 4 up	lates per 30
			all alternatives hav	e a simmilar	inspection pe	rformed	construction	EHMPs), Rrequires	cover with 24	-inches clean fill	construction F	EHMPs).	vear period a	commodate
			amount of planning	g errort and	according to	the EHMP and	an annual ca	p inspection	25101 1101 24		Miriafi/geotex	tile placed as a	park maintena	ince changes
			each of the alterna	ni addition to	submitted to	DOH.	performed ac	cording to the	Assume 300	additional cubic	barrier betwee	en clena fill and	(Pre-construct	ion EHMPs).
			evaluated	10/05			EHMP and su	ubmitted to DOH.	yards clean s	oil for drainage	post excavati	on surface,	Rrequires an	annual cap
			staluatos.				Assume miria	fi/geotextile placed	grading.		replace volum	ne removed from	inspection pe	formed
							on contaimat	ed soil, cover with			DUs cover all	DUs with 24-	according to t	he EHMP and
							24-inches cle	an fill.	Archeologica	Consultation and	inches clean	fill. Annual	submitted to [DOH.
							Assume 300	additional cubic	Monitoring.		inspection of	soil cover.		
							yards clean s	ioii tor drainage			Assume 300	additional cubic		
							Archeologica	Consultation and			garus ciean s	eological		
							Monitoring.	r consultation and			Consultation :	and Monitoring.		
		Task Title:					mornioning.				Conculation	and monitoring.		
Scope of Work:		Duration:				Days	46	Days	150	Days	125	Days	20	Days
	Loodod		·		·	,				1 1	I		I	,
2 Equipment	Loaded Rate (\$)	11-3	Unite	Tack (\$)	Linite	Tack (\$)	Unite	Tack (\$)	Linite	Tack (\$)	Unite	Tack (\$)	Unito	Task (\$)
z. Equipment		Unit	UTIRS	ιαδκ (φ)	Units	1 αδκ (φ)	UTIILS	ι αδι (φ)	Units	1 αδκ (φ)	UTILS	1 αδκ (φ)	UTIILS	1 αδκ (φ)
Excavator with Shear attachment	\$123.07	hr		┼────┨			40	\$4.054.06	40	\$4.954.06	40	\$4.954.96	20	\$2 477 40
Excavator with Shear attachment	\$1∠3.87 ¢∈1.04	lli br		┼────┨			40	\$4,954.96	40	\$4,934.96	40	\$4,954.96	20	\$2,411.48 \$1.220.95
Dump Truck operated	301.94 ¢60.44	nr br		┼────┨		┥───┤	40	¢2,477.69	40	\$2,477.69	40	⇒2,477.69 \$2,725.50	20	⇒1,238.85 \$1,262.75
Dump Truck operated	\$68.14	nr				-	40	\$2,725.50	40	\$2,725.50	40	\$2,725.50	20	\$1,362.75
	\$2,682.00	mu					2.5	\$6,705.00	7.5	\$20,115.00	2.25	\$6,034.50	1.5	\$4,023.00
SUV 2	\$2,082.00	menth					2.5	\$6,705.00	7.5	\$20,115.00	2.5	\$0,705.00	1.5	\$4,023.00
FUILA FUILY	\$3U1.22	monun		┼────┨			2.5	\$106.05	C. 1	¢∠,304.14	2.5	¢106.05	1.5	\$400.63
L	ຈ ບ.00	D					L		I	450.000.00	I	1 00 005 TO	I	
		Suptotals		\$0.00		\$0.00		\$24,336.20		\$52,692.29		\$23,665.70		\$13,585.91
3. Materials and Other Direct	Rate (\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
				. /										
consumables (water etc.) Health	\$30.97	day		1			46	\$1,424.43	150	\$4,644.87	125	\$3,870.73		
and safety														
PPE	\$30.97	day					46	\$1,424.43	150	\$4,644.87	125	\$3,870.73	20	\$619.32
Eyewash	\$92.91	ls					2	\$185.82	4	\$371.63	2	\$185.82	1	\$92.91
Misc Health and Safety items	\$619.39	ls					2	\$1,238.78	4	\$2,477.56	2	\$1,238.78	1	\$619.39
Plastic sheeting	\$135.02	roll					5	\$675.12	15	\$2,025.35	10	\$1,350.23	1	\$135.02
Restoration (not backfill)	\$1,238.78	ls					0		0		0			
Disposal of Vegetation HD	\$619.39	ls												
Fuel of vehicles	\$5.70	gal					500	\$2,851.55	1200	\$6,843.72	1000	\$5,703.10	250	\$1,425.78
Report reproduction	\$154.85	-					3	\$464.55	3	\$464.55	3	\$464.55	3	\$464.55
		Subtotals		\$0.00		\$0.00		\$8,264.68		\$21,472.55		\$16,683.94		\$3,356.97

Appendix D-1: Rough Order of Magnitude Cost Comparison

Hakalau Beach Park Lead I	mpacted So	<u>il Reme</u> di	al Alternati	ve Anal	ysis										
Client: HDOT		Phase	01			6a		5a		5b		5c		6b	
Project: Hakalau Beach Park Reme	edial Alterntive	Task:	Planning			Alternative A		Alternative B	-	Alternative C		Alternative D		Alternative E	
Project: Hakalau Beach Park Reme Location: Hakalau, Hawaii	adial Alterntive Bi	Task:	Planning Lump Sum Project Ma Public Mer all alternar amount of this cost w each of th evaluated	ning 5 Sum Sct Management, Permiting, ic Meeting Support - Assume ternatives have a simmilar unt of planning effort and sost would be in addition to of the alternatives Jated.		Alternative A Lump Sum No Action- Pre and updated of EHMP needed Assume 4 upc year period ac park maintena (Pre-construct Rrequires an a inspection per according to ti submitted to D	pare EHMP avery 5 years. I. lates per 30 commodate nce changes on EHMPs). annual formed the EHMP and YOH.	Altemative B Lump Sum Soil Cover All exceed the H for unrestrictle lead (200 mg inspection of EHMP needed Assume 4 up period accom maintenance construction I an annual ca performed ac EHMP and su Assume minia on contaimat 24-inches cle Assume 300 yards clean s	- DUs which DOH Tier 1 EAL d land use for (kg), Annual cover. d. dates per 30 year modate park changes (Pre- EHMPs), Rrequires p inspection cording to the ibmitted to DOH. fi/geotextile placed ed soil, cover with an fill. additional cubic oil for drainage	Alternative C Lump Sum Soil Excavatio Disposalof all exceeds the 1 for unrestricte- lead (200 mg/ contaminated No EHMP nee Assume miniaf placed on cor cover with 24- Assume 300 a yards clean so grading. Archeological Monitoring.	n, and Off-Site soil which 4DOH Tier 1 EAL d land use for kg) Replace soil with clean fill. eded. i/geotextile taimated soil, inches clean fill. additional cubic oil for drainage Consultation and	Alternative D Lump Sum Soil Excavatic Disposal grea mg/kg.IF pas to WHSL Con mg/kg that fai CONUS. Rela EHMP neede updates per 3 accommodate maintenance construction E Minäfigeotext barrier betwee post excavatic replace volum DUs cover all inches clean 1 inspection of Assum 3000 (vertication construction construction construction construction construction) and the second construction construction of Assum 3000 (vertication construction construction construction construction) and the second construction cons	on and Off-Site ter than 800 is the TCLP send coentrations > 800 il TCLP dispose of ce with clean fill. d.Assume 4 80 year period park changes (Pre- EHMPs). tile placed as a an clena fill and on surface, ne removed from DUs with 24- fill. Annual soil cover. additional cubic	Alternative E Lump Sum Institional Co EHMP and u years. Install all the areas exceed conss use and only pavilions and EHMP needed Assume 4 up year period a park mainten (Pre-construc Rrequires an inspection pr according to submitted to	ntrols- Prepare pdated every 5 a fence around at park that truction/industrial alow access to I shoreline areas. ed. dates per 30 accommodate ance changes tion EHMPs). annual cap arformed the EHMP and DOH.
		Task Title:					_	grading. Archeologica Monitoring.	Consultation and		_	yards clean so grading. Arch Consultation	oil for drainage eological and Monitoring.		_
Scope of Work:		Duration:					Days	46	Days	150	Days	125	Days	20	Days
4. Subcontractors	Loaded Rate (\$)	Unit	Uni	ts	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
Construction Screening	\$21,400,00	ls						1	\$21,400,00	1	\$21,400,00	1	\$21,400,00		
Excavate, Load, Haul, and	\$2,140.00	yrd3						0	φ21,400.00	246	\$526,440.00	246	\$526,440.00	-	
Excavate, Load, Haul, and	\$1,050.00	yrd3								3811	\$4,001,550.00	1724	\$1,810,200.00	-	
import Clean Fill and Grade	\$187.25	yrd3						7923	\$1,483,581.75	7923	\$1,483,581.75	9647	\$1,806,400.75	-	
Hydroseed	\$1.07	sqft						102905	\$110,108.35	102905	\$110,108.35	46551	\$49,809.57		
Mirafi/Geotextile spread accorss site	\$0.54	sqft						102905	\$55,054.18			44500	\$23,807.50		
Dust Controls, Water meter, water truck	\$1,872.50	day						25	\$46,812.50	48	\$89,880.00	40	\$74,900.00		
Plastic Sheeting	\$0.54	sqft													
Cargo Air Samples Hilo to Hono	\$154.85	ea						4	\$619.40	4	\$619.40	4	\$619.40		
Fed EX Hono to AAL	\$121.40	ea						4	\$485.61	4	\$485.61	4	\$485.61		
Wood Chipper	\$1,238.78	ls						20	\$24,775.64	20	\$24,775.64	20	\$24,775.64		
Archeological Support	\$18,725.00	ls						1	\$18,725.00	1	\$18,725.00	1	\$18,725.00		
Archeological Monitoring	\$5,885.00	wk						5	\$29,425.00	15	\$88,275.00	5	\$29,425.00	L	
Fencing Installation	\$45.00	ft.						250	\$11,250.00			250	\$11,250.00	2000	\$90,000.00
Air Monitoring	\$535.00	day						20	\$10,700.00	20	\$10,700.00	20	\$10,700.00	10	\$5,350.00
ISM Prep	\$107.00	ea]			5	\$535.00	30	\$3,210.00	16	\$1,712.00		
	\$86.71	ea						5	\$433.56	30	\$2,601.38	16	\$1,387.40		<u> </u>
	\$12.39	ea						5	\$61.95	30	\$3/1.72	30	\$3/1.72		<u> </u>
	\$30.97 \$171.20	ea						5	\$154.83	30	\$928.97 \$5.136.00	16	\$495.45		
Shinning to lab	\$428.00	64							\$1 284 00	50	\$2 568 00	10	\$2,739.20		+
Suppling to tab	φ 1 20.00	Subtotals			\$0.00	L	\$0.00	``````````````````````````````````````	\$1,816,262.77		\$6,391,356.82		\$4,417,356.24	L	\$95,350.00

Appendix D-1: Rough Order of Magnitude Cost Comparison

Hakalau Beach Park Lead I	mpacted So	oil Remedia	al Alternative Anal	ysis										
Client: HDOT		Phase	01		6a		5a		5b		5c		6b	
Project: Hakalau Beach Park Reme	Beach Park Remedial Alterntive Task: Planning , Hawaii Billing Type: Lump Sum				Alternative A		Alternative B	-	Alternative C		Alternative D		Alternative E	
Location: Hakalau, Hawaii	В	illing Type:	Lump Sum		Lump Sum		Lump Sum		Lump Sum		Lump Sum		Lump Sum	
					No Action- Pr	epare EHMP	Soil Cover Al	I DUs which	Soil Excavation	on, and Off-Site	Soil Excavati	on and Off-Site	Institional Cor	trols- Prepare
					and updated	every 5 years.	exceed the F	HDOH Tier 1 EAL	Disposalot all	Soil which	Disposal grea	ater than 800	EHMP and up	dated every 5
						d	for unrestricte	ed land use for	exceeds the	HDOH HER'T EAL	to WHSL Cor	ss the TCLP send	years. Install a	t rence around
					CHIMF Heede	u.	inspection of	cover	lead (200 mg	/kg) Replace	ma/ka that fa	il TCI P dispose of	exceed const	uction/industrial
					Assume 4 up	dates per 30	inopoonon or		contaminated	soil with clean fill.	CONUS, Rela	ace with clean fill.	use and only	alow access to
					year period a	ccommodate	EHMP neede	ed.					pavilions and	shoreline areas.
					park mainten	ance changes			No EHMP ne	eded.	EHMP neede	ed.Assume 4	•	
			Project Manageme	nt. Permitina.	(Pre-construc	tion EHMPs).	Assume 4 up	odates per 30 year			updates per	30 year period	EHMP neede	1.
			Public Meeting Sup	port - Assume			period accom	nmodate park	Assume miria	fi/geotextile	accommodate	e park		
			all alternatives have	e a simmilar	Rrequires an	annual	maintenance	changes (Pre-	placed on co	ntaimated soil,	maintenance	changes (Pre-	Assume 4 upo	lates per 30
			amount of planning	effort and	inspection pe	normed	construction	EHMPs). Rrequires	cover with 24	-inches clean fill.	construction I	EHMPS).	year period ac	commodate
			this cost would be i	n addition to	submitted to		an annual ca	ip inspection	Assume 300	additional cubic	harrier betwee	an clena fill and	(Pre-construct	ion EHMPs)
			each of the alterna	tives	Submitted to	born.	EHMP and si	ubmitted to DOH.	vards clean s	oil for drainage	post excavati	ion surface.	Rrequires an	annual cap
			evaluated.				Assume miria	fi/geotextile placed	grading.		replace volun	ne removed from	inspection pe	formed
							on contaimat	ted soil, cover with	0 0		DUs cover all	DUs with 24-	according to t	ne EHMP and
							24-inches cle	ean fill.	Archeologica	Consultation and	inches clean	fill. Annual	submitted to [JOH.
						Assume 300	additional cubic	Monitoring.		inspection of	soil cover.			
						yards clean s	soil for drainage			Assume 300	additional cubic			
						grading.				yards clean s	oil for drainage			
						Monitoring	in consultation and			Consultation and Monitoring				
		Task Title:					wormoning.				Consultation	and morntoning.		
Scope of Work:		Duration:				Days	46	Days	150	Days	125	Days	20	Days
	Loaded													
5. Travel	Rate (\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
Flights to Hilo RT Honolulu -	\$294.25	RT					8	\$2,354.00	16	\$4,708.00	12	\$3,531.00	4	\$1,177.00
Hawaii Construction Manager														
Flights to Hilo RT Honolulu -	\$294.25	RT					8	\$2,354.00	30	\$8,827.50	25	\$7,356.25	4	\$1,177.00
Hawaii Geologist					-		-							
Per Diem Construction Manager	\$92.91	day					64	\$5,946.12	76	\$7,061.02	75	\$6,968.11	30	\$2,787.24
Per Diem Geologist	\$92.91	day					64	\$5,946.12	150	\$13,936.22	125	\$11,613.51	30	\$2,787.24
Lodging Construction Manager	\$180.00	day					64	\$11,520.00	76	\$13,680.00	75	\$13,500.00	30	\$5,400.00
Lodging Geologist	\$180.00	day					64	\$11,520.00	120	\$21,600.00	100	\$18,000.00	30	\$5,400.00
		Subtotals		\$0.00		\$0.00		\$39,640.24		\$69,812.74		\$60,968.87		\$18,728.48
	SU	BTOTALS		\$43,487,03		\$151.268.39		\$2.092.438.49		\$6.870.258.52		\$4.808.960.51		\$260.677.03
PROFIT	0.06	Parcont		\$2 600 22		\$9.076.10		\$125 546 31		\$412 215 51		\$288 537 63		\$15 640 62
	0.00	reicent		\$2,003.22		\$3,070.10		\$125,540.51		\$\$12,213.31		\$200,337.03		\$13,040.02
SUBTOTOTAL				\$46,096.25		\$160,344.49		\$2,217,984.80		\$7,282,474.03		\$5,097,498.14		\$276,317.65
				,		· · · · · ·			-			· · · · · ·		ı
Bonding, Insurance, and Tax	Rate (\$)	Unit												
Markup	0.066	Percent				1 1				1				
HI GET	0.04166	Percent		\$1,920.37		\$6,679.95		\$92,401.25		\$303,387.87		\$212,361.77		\$10,859.81
Unit Rate Adjustment	\$1.00	LS		<u> </u>	L	<u> </u>	L							
	TAS	K TOTALS		\$48,016.62		\$167,024.44		\$2,310,386.05		\$7,585,861.90		\$5,309,859.91		\$271,536.84
						· · · · ·								

TASKS													
	Client: HDOT		Phase	01		06		5a		5b		5c	
	Hakalau Beach Park Lead Impacted Soil Re	emedial Alternti	Task:	Planning		Alternative A		Alternative B -		Alternative C		Alternative 5	
	Location:	E	Silling Type:	Lump Sum		Lump Sum		Lump Sum		Lump Sum	n and Off Site	Lump Sum	an and Off Site Diananal
	Estimate Date: 04/23/21					updated even	v 5 vears.	HDOH Tier 1 E	EAL for unrestricted	Disposalof all	soil which exceeds	Excavate so	l less than 800 or pass the
								land use for le	ad (200 mg/kg).	the HDOH Tie	r 1 EAL for	TCLP at Wes	t Hawaii Sanitary Landfill
						EHMP neede	d.	Annual inspec	tion of cover.	unrestricted la	nd use for lead (200	replace with	clean soil. For higher
						Assume 4 upo	lates per 30 year	EHMP needed	d.	with clean fill.	e contaminateu soi	than 800 mg	kg lead that fail TCLP
						period to acco	ommodate park					and dispose	at out of State Facility and
						maintenance	changes (Pre-	Assume 4 upo	lates per 30 year	No EHMP nee	ded.	replace with	clean fill.
						an annual ins	pection performed	maintenance	changes (Pre-	Miriafi/geotext	ile placed on	EHMP neede	d.Assume 4 updates per
				Project Manag	gement, Permiting,	according to t	he EHMP and	construction E	HMPs).	contaimated s	oil, cover with 18-	30 year perio	d to accommodate park
				all alternatives	s have a simmilar	submitted to E	DOH.	Proquires and	annual can inspection	inches clean f	ill.	maintenance	changes (Pre- EHMPs) Miriafi/geotextile
				amount of pla	nning effort.			performed acc	cording to the EHMP	Assume 300 a	additional cubic yards	placed as a	parrier between clena fill
								and submitted	I to DOH.	clean soil for c	Irainage grading.	and post exc	avation surface, replace
								Miriafi/geotext	ile placed on	Assume arche	ological monitoring	Volume remo	ved from DUs cover all
								inches clean f	ill.		iological montoning.	600 addition	al cubic yards clean soil for
												drainage gra	ding.Rrequires an annual
								clean soil for c	idditional cubic yards Irainade grading.			the EHMP at	in performed according to
												Archeologica	I Consultation and
			Task Title:					Assume arche	ological monitoring.			Monitoring.	
	Scope of Work:		Duration:				Days	36	Days	125	Days	100	Days
Codo	1a Labor	(\$)	Linit	Linite	Tack (\$)	Linite	Tack (\$)	Linite	Tack (\$)	Linite	Tack (\$)	Lipite	Tack (\$)
Code		(Ψ)	Offic	Offica	Task (ψ)	Offica	Task (ψ)	OTIKS	Task (ψ)	Offica	Task (ψ)	Offica	Task (\$)
101	Principal	\$186.25	Hour	40	\$7,450.20	40	\$7,450.20	30	\$5,587.65	40	\$7,450.20	40	\$7,450.20
103	Project Manager	\$130.96	Hour	40	\$5,238.29	60	\$7,857.44	80	\$10,476.58	240	\$31,429.75	80	\$10,476.58
105	Senior Project Geologist	\$118.91	Hour	120	\$14,269.09	400	\$47,563.64	400	\$47,563.64	400	\$47,563.64	400	\$47,563.64
106	Senior Project Scientist	\$119.59	Hour			400	\$47,837.56	520	\$62,188.83	400	\$47,837.56	480	\$57,405.07
	Project Geologist	\$89.64	Hour										
111	Project Geologist	\$96.00	Hour	120	\$11,520.00	200	\$19,200.00	288	\$27,648.00	1000	\$96,000.00	800	\$76,800.00
112	Assistant Project Scientist	\$68.02	Hour										
114	Staff Geologist	\$62.58	Hour										
125	Construction Manager	\$142.89	Hour					288	\$41,151.69	448	\$64,013.73	368	\$52,582.71
129	Laborer	\$39.77	Hour										
140	Technical Editor	\$107.30	Hour	8	\$858.40	40	\$4,291.98	48	\$5,150.38	8	\$858.40	48	\$5,150.38
122	Word Processor	\$57.45	Hour	8	\$459.59	40	\$2,297.93	48	\$2,757.52	8	\$459.59	48	\$2,757.52
136	Senior CADD Operator	\$87.02	Hour	12	\$1,044.28	60	\$5,221.39	82	\$7,135.89	24	\$2,088.55	82	\$7,135.89
124	CADD Operator	\$69.74	Hour										
120	Project Administrator	\$66.18	Hour	40	\$2,647.18	40	\$2,647.18	80	\$5,294.36	40	\$2,647.18	80	\$5,294.36
135	Senior Project Accountant	\$86.26	Hour			80	\$6,901.07	80	\$6,901.07	40	\$3,450.54	# 80	\$6,901.07
			Subtotals	388	\$43,487.03	1360	\$151,268.39	1944	\$221,855.61	2648	\$303,799.14	2506	\$279,517.42
Codo	the Subscription Labor	(¢)	11=3	Linito	Teak (\$)	Linito	Teak (¢)	Linito	Teak (\$)	Unito	Teek (\$)	Lipito	Took (\$)
COUR	TD. Subcontractor Labor	(Φ)	Unit	Units	1 dSK (⊅)	Units	1 dSK (\$)	Units	1 dSK (⊅)	Units	Task (\$)	UTIILS	1 dSK (\$)
	Brush Clearing 1	\$29.48	hour					180	\$5,306.13	180	\$5,306.13	180	\$5,306.13
-	Brush Clearing 2	\$29.48	hour					180	\$5,306.13	180	\$5,306.13	180	\$5,306.13
<u> </u>	Brush Clearing 3	\$29.48	hour					180	\$5,306.13	180	\$5,306.13	180	\$5,306.13
	Brush Clearing 4	\$29.48	hour					180	\$5,306.13	180	\$5,306.13	180	\$5,306.13
<u> </u>													
-	-		Subtotals	0	\$0.00	0	\$0.00	720	\$21,224.52	720	\$21,224.52	720	\$21,224.52

TASKS Client: HDOT 06 5c Phase 01 5h 52 Hakalau Beach Park Lead Impacted Soil Remedial Alterntiv Task: Planning Alternative A Alternative B -Alternative C Alternative 5 Location: Billing Type: Lump Sum Lump Sum Lump Sum Lump Sum Lump Sum Estimate Date: 04/23/21 No Action- Prepare EHMP and Soil Cover All DUs which exceed the Soil Excavation, and Off-Site Soil Excavation and Off-Site Disposal. HDOH Tier 1 EAL for unrestricted Disposalof all soil which exceeds updated every 5 years. Excavate soil less than 800 or pass the land use for lead (200 mg/kg). the HDOH Tier 1 EAL for TCLP at West Hawaii Sanitary Landfill EHMP needed. Annual inspection of cover. unrestricted land use for lead (200 replace with clean soil. For higher ma/kg) Replace contaminated soil concentrations excavate soil greater than 800 mg/kg lead that fail TCLP Assume 4 updates per 30 year EHMP needed. with clean fill. period to accommodate park and dispose at out of State Facility and maintenance changes (Pre-Assume 4 updates per 30 year No EHMP needed. replace with clean fill. construction EHMPs). Rrequires period to accommodate park an annual inspection performed maintenance changes (Pre-Miriafi/geotextile placed on EHMP needed.Assume 4 updates per Project Management, Permiting, according to the EHMP and construction EHMPs). contaimated soil, cover with 18-30 year period to accommodate park Public Meeting Support - Assume submitted to DOH. inches clean fill maintenance changes (Preall alternatives have a simmilar construction EHMPs). Miriafi/geotextile Rrequires an annual cap inspection amount of planning effort. performed according to the EHMP Assume 300 additional cubic yards placed as a barrier between clena fill and submitted to DOH. clean soil for drainage grading. and post excavation surface, replace volume removed from DUs cover all Miriafi/geotextile placed on contaimated soil, cover with 18-Assume archeological monitoring .. DUs with 18-inches clean fill. Assume inches clean fill. 600 additional cubic vards clean soil for drainage grading.Rrequires an annual Assume 300 additional cubic yards cap inspection performed according to the EHMP and submitted to DOH. clean soil for drainage grading. Archeological Consultation and Assume archeological monitoring. Monitoring. Task Title: Code (\$) Unit Units Task (\$) 2. Equipment Excavator with Shear attachment \$123.87 \$4,954.96 \$4,954.96 \$4 954 96 hr 40 40 40 Backhoe (operated) - brush clearing \$61.94 hr 40 \$2,477.69 40 \$2,477.69 40 \$2,477.69 Dump Truck operated - brush clearing \$68.14 \$2,725.50 \$2,725.50 \$2,725.50 40 40 40 hr \$1,486.54 \$2,973.08 \$11,149.05 \$7,432.7 SUV ' mt 2 7.5 5 SUV 2 \$1,486,54 mt \$2.973.08 7.5 \$11.149.05 5 \$7.432.70 2

-	-		Subtotals	-	\$0.00	1	\$0.00	-	\$20,435.07	-	\$38,476.71		\$30,275.96
	misc brush clearing equipemnt	\$92.97	dy					40	\$3,716.32	40	\$3,716.32	40	\$3,716.32
	Trimble GPS	\$92.91	dy			1							
	Mine Labs	\$30.97	dy dy										
	ATV's	\$309.70) week										
	Porta Potty	\$307.22	2 month					2	\$614.44	7.5	\$2,304.14	5	\$1,536.09
	0012	φ1,400.04						-	φ2,010.00	1.0	ψ11,140.00	Ŭ	ψ1,402.10

Code	3. Materials and Other Direct Costs	(\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)		Units	Task (\$)
	Consumables (water etc.) Health and	\$123.87	day					36	\$4,459.46	150	\$18,581.09		100	\$12,387.39
	PPE -tyveck suit 20 per day (2XL)	\$61.94	day					36	\$2,229.92	150	\$9,291.35		100	\$6,194.23
	Eyewash	\$68.14	ls					2	\$136.28	2	\$136.28		2	\$136.28
	Misc Health and Safety items	\$1,486.54	ls					2	\$2,973.08	2	\$2,973.08		2	\$2,973.08
	Plastic sheeting	\$1,486.54	roll					5	\$7,432.70	10	\$14,865.40		10	\$14,865.40
	Restoration (not backfill)	\$307.22	ls					0		0		#	10	\$3,072.18
	Disposal of Vegetation HD	\$309.70	ls											
	Fuel of vehicles	\$30.97	gal					400	\$12,386.32	1200	\$37,158.96		750	\$23,224.35
	Report reproduction	\$92.91						3	\$278.72	3	\$278.72		3	\$278.72
	-		Subtotals		\$0.00		\$0.00		\$29,896.48		\$83,284.88			\$63,131.63

TASKS

	Client: HDOT Hakalau Beach Park Lead Impacted Soil Reme Location: Estimate Date: 04/23/21	idial Alterntiv Bill	Phase Task: ling Type: Task Title:	01 Planning Lump Sum Project Manaç Public Meeting all alternatives amount of pla	gement, Permiting, g Support - Assume s have a simmilar ınning effort.	06 Alternative A Lump Sum No Action- Pri updated ever EHMP neede Assume 4 up period to accominate antenance construction f an annual ins according to f submitted to l	epare EHMP and y 5 years. d. dates per 30 year ommodate park changes (Pre- EHMPs), Rrequires spection performed the EHMP and DOH.	5a Alternative B - Lump Sum Soil Cover All I HDOH Tier 1 E land use for le Annual inspec EHMP needed Assume 4 upc period to acco maintenance 4 construction E Rrequires an a performed acc and submittec Miniafi/geotext contaimated s inches clean f Assume 300 a clean soil for o	DUs which exceed the ;AL for unrestricted ad (200 mg/kg). tion of cover. 1. lates per 30 year immodate park changes (Pre- ;HMPs). annual cap inspection cording to the EHMP to DOH. ile placed on coll, cover with 18- ill. additional cubic yards drainage grading.	5b Alternative C Lump Sum Soil Excavatio Disposalof all the HDOH li- tine unrestricted la mg/kg) Replac with clean fill. No EHMP nee Miriafi/geotext contaimated s inches clean f Assume 300 a clean soil for c	In, and Off-Site soil which exceeds r 1 EAL for Ind use for lead (200 te contaminated soil aded. tille placed on soil, cover with 18- till. additional cubic yards drainage grading. sological monitoring.	Sc Alternative 5 Lump Sum Soil Excavatio Excavate soil 1 TCLP at West replace with cl concentrations than 800 mg/k and dispose a replace with cl EHMP needec 30 year perioc maintenance of construction E placed as a bi and post exca volume remov DUs with 18-in 600 additiona drainage grad cap inspectior the EHMP and Archeological Monitoring.	n and Off-Site Disposal. ess than 800 or pass the Hawaii Sanitary Landfill ean soil. For higher : excavate soil greater g lead that fail TCLP t out of State Facility and ean fill. I.Assume 4 updates per i to accommodate park shanges (Pre- HMPs). Miriafi/geotextile arrier between clena fill vation surface, replace ed from DUs cover all ches clean fill. Assume I cubic yards clean soil for ing.Rrequires an annual p performed according to a submitted to DOH. Consultation and
,				11.2	T 1. (A)	1	T L (A)	1		11.7		11.25	
Code	4. Subcontractors	(\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	I ask (\$)
	Construction Screening	\$21,400.00	ls		+	1	-	1	\$21,400.00				
	Excavate, Load, Haul, and Tipping Fee (Mainland)	\$2,000.00	yrd3					0		246	\$492,000.00	246	\$491,760.00
	Excavate, Load, Haul, and Tipping Fee (WHSL - On Island)	\$1,050.00	yrd3							3811	\$4,001,550.00	1724	\$1,810,200.00
	import Clean Fill and Grade	\$250.00	yrd3			1		6018	\$1,504,500.00	6018	\$1,504,500.00	9166	\$2,291,500.00
	Hydroseed	\$1.00	sqft			1		102905	\$102,905.00	102905	\$102,905.00	46,551	\$46,551.00
	Mirafi/Geotextile spread accorss site	\$0.50	sqft			1		102905	\$51,452.50			46,551	\$23,275.50
	Dust Controls, Water meter, water truck	\$1,750.00	day			1		25	\$43,750.00	150	\$262,500.00	30	\$52,500.00
	Plastic Sheeting	\$0.50	sqft			1							
	Cargo Air Samples Hilo to Hono	\$144.72	ea			1		4	\$578.88	4	\$578.88	4	\$578.88

Code	4. Subcontractors	(\$)	Unit	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
	Construction Screening	\$21,400.00	ls					1	\$21,400.00				
	Excavate, Load, Haul, and Tipping Fee (Mainland)	\$2,000.00	yrd3					0		246	\$492,000.00	246	\$491,760.00
	Excavate, Load, Haul, and Tipping Fee (WHSL - On Island)	\$1,050.00	yrd3							3811	\$4,001,550.00	1724	\$1,810,200.00
	import Clean Fill and Grade	\$250.00	yrd3					6018	\$1,504,500.00	6018	\$1,504,500.00	9166	\$2,291,500.00
	Hydroseed	\$1.00	sqft					102905	\$102,905.00	102905	\$102,905.00	46,551	\$46,551.00
	Mirafi/Geotextile spread accorss site	\$0.50	sqft					102905	\$51,452.50			46,551	\$23,275.50
	Dust Controls, Water meter, water truck	\$1,750.00	day					25	\$43,750.00	150	\$262,500.00	30	\$52,500.00
	Plastic Sheeting	\$0.50	sqft										
	Cargo Air Samples Hilo to Hono	\$144.72	ea					4	\$578.88	4	\$578.88	4	\$578.88
	Fed EX Hono to AAL	\$113.46	ea					4	\$453.84	4	\$453.84	4	\$453.84
	Wood Chipper	\$1,157.74	day					20	\$23,154.80	20	\$23,154.80	20	\$23,154.80
	Archeological Support	\$17,500.00	ls					1	\$17,500.00	1	\$17,500.00	1	\$17,500.00
	Archeological Monitoring	\$5,500.00	wk					5	\$27,500.00	15	\$82,500.00	10	\$55,000.00
	Air Monitoring	\$500.00	day					20	\$10,000.00	20	\$10,000.00	20	\$10,000.00
ISM	ISM Prep	\$100.00	ea					5	\$500.00	30	\$3,000.00	16	\$1,600.00
ISM	RCRA 8 METAL	\$81.04	ea					5	\$405.20	30	\$2,431.20	16	\$1,296.64
ISM	PERCENT MOISTURE	\$11.58	ea					5	\$57.90			16	\$185.28
	RCRA 8 METAL -TCLP	\$160.00	ea					5	\$800.00	30	\$4,800.00	16	\$2,560.00
	Shipping to lab	\$400.00	ea		0		0	3	1,200	6	2,400	4	1,600
			Subtotals		\$0.00		\$0.00		\$1,806,302.82		\$6,511,141.92		\$4,830,178.98

TASKS														
	Client: HDOT Hakalau Beach Park Lead Impacted Soil Re Location: Estimate Date: 04/23/21	emedial Altemtiv B	Phase Task: illing Type:	 01 Planning Lump Sum Project Management, Permiting, Public Meeting Support - Assume all alternatives have a simmilar amount of planning effort.			temative A mp Sum o Action- Pre dated even HMP needed ssume 4 upp riod to acco intenance nstruction E annual ins coording to ti bmitted to D	epare EHMP and 5 years. d. dates per 30 year wmmodate park changes (Pre- HMPs). Rrequires pection performed he EHMP and XOH.	5a Alternative B - Lump Sum Soil Cover All DUs which exceed the HDOH Tier 1 EAL for unrestricted land use for lead (200 mg/kg). Annual inspection of cover. EHMP needed. Assume 4 updates per 30 year period to accommodate park maintenance changes (Pre- construction EHMPs). Rrequires an annual cap inspection performed according to the EHMP and submitted to DOH. Miriafi/geotextile placed on contaimated soil, cover with 18- inches clean fill. Assume 300 additional cubic yards clean soil for drainage grading.		 5b Alternative C Lump Sum Soil Excavation, and Off-Site Disposalof all soil which exceeds the HDOH Tier 1 EAL for unrestricted land use for lead (200 m//kg) Replace contaminated soil with clean fill. No EHMP needed. Miriafi/geotextile placed on contaimated soil, cover with 18- inches clean fill. Assume 300 additional cubic yards clean soil for drainage grading. Assume archeological monitoring 		5c Alternative 5 Lump Sum Soil Excavation and Off-Site Disposal. Excavate soil less than 800 or pass the TCLP at West Hawaii Sanitary Landfill replace with clean soil. For higher concentrations excavate soil greater than 800 mg/kg lead that fail TCLP and dispose at out of State Facility and replace with clean fill. EHMP needed Assume 4 updates per 30 year period to accommodate park maintenance changes (Pre- construction EHMPs). Miriaf/geotextile placed as a barrier between clean fill and post excavation surface, replace volume removed from DUs cover all DUs with 18-inches clean fill. Assume 600 additional cubic yards clean soil for drainage grading. Rrequires an annual cap inspection performed according to the EHMP and submitted to DOH.	
			Task litle:											
Code	5. Travel	(\$)	Unit	Units	Task (\$)		Units	Task (\$)	Units	Task (\$)	Units	Task (\$)	Units	Task (\$)
		-												
	Flights to Hilo RT Honolulu - Hawaii Construction Manager	\$294.25	RT						6	\$1,765.50	12	\$3,531.00	10	\$2,942.50
	Flights to Hilo RT Honolulu - Hawaii Geologist	\$294.25	RT						6	\$1,765.50	25	\$7,356.25	20	\$5,885.00
		\$0.00	RT						0		0		0	
	Per Diem Construction Manager	\$92.91	day						46	\$4,273.77	75	\$6,968.11	50	\$4,645.41
	Per Diem Geologist	\$92.91	day						46	\$4,273.77	125	\$11,613.51	100	\$9,290.81
	Lodging Construction Manager	\$180.00	day						46	\$8,280.00	75	\$13,500.00	50	\$9,000.00
	Lodging Geologist	\$180.00	day						46	\$8,280.00	100	\$18,000.00	80	\$14,400.00
			Subtotals		\$0.00			\$0.00	l	\$28,638.54		\$60,968.87		\$46,163.72
		SU	BTOTALS		\$43,487.03			\$151,268.39		\$2,128,353.04		\$7,018,896.04		\$5,270,492.23
	PROFIT	0.06	Percent		\$2 609 22			\$9.076.10		\$127 701 18		\$421 133 76		\$316 229 53
	SUBTOTOTAL	0.00			\$46.096.25			\$160.344.49		\$2,256.054.22		\$7,440.029.80		\$5.586.721 76
					÷.0,000.20	_				+_,, +				+0,000,121110
	Bonding, Insurance, and Taxes	Rate (\$)	Unit	L							L			
	Markup	0.066	Percent		\$1 920 37			\$6 679 95		\$93 987 22		\$309.951.64		\$232 7/2 82
	Unit Rate Adjustment	\$1.00	LS		φ1,320.31			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		<i>493,901.22</i>		<i>w000,001.0</i> 4		φ202,1 4 2.00
				L							L		L	1
		TAS	K TOTALS		\$48,016.62			\$167,024.44		\$2,350,041.44		\$7,749,981.44		\$5,819,464.59

APPENDIX E: TREATABILITY STUDY

Appendix E

Bench Test Treatability Study on Hakalau Beach Park Soil – Batch 1: Triple Superphosphate and Batch 2: Portland Cement

Introduction

A Bench Test Treatability Study was performed to evaluate the potential for treating high concentrations of lead in the soil on the floor of Hakalau Valley to reduce the toxicity of the soil. During soil investigations performed at Hakalau Beach Park between 2017 and 2022, a large area under the Hakalau bridge and primarily on the State of Hawaii Department of Transportation right of entry easement land, soil sample results have identified concentrations of lead in the soil as high as 25,000 milligrams per kilogram (mg/kg). The total lead results are well above the HDOH Tier 1 EAL for Commercial/Industrial Land-use (800 mg/kg) and the HDOH Tier 1 EAL for Unrestricted Land-use (200 mg/kg) and are considered gross soil contamination. The DOH HEER office would require that lead-contaminated that meets the threshold for gross contamination be a priority for remedial action.

Additionally, these samples exhibited hazardous waste characteristics well over the United States Environmental Protection Agencies Resource Conservation Recovery Act (RCRA) definition of lead as a hazardous waste (5.0 milligrams per liter [mg/L]). Results from RCRA toxicity characteristic leaching procedure testing (TCLP) on samples from this area have had concentrations of leachable lead high as 31.8 mg/L on a sample with a total lead concentration of 8,820 mg/kg, let alone other samples as high as 25,000 mg/kg. There is no facility in the State of Hawaii that can accept lead-impacted soil that has a TCLP result higher than 5.0 mg/L.

One alternative that may potentially reduce the cost of remediating the soil would be to stabilize some portion of the soils that exceed the hazardous waste criterion so that their TCLP results were below the RCRA toxicity characteristic definition of a hazardous waste (TCLP lead <5.0 mg/L).

Materials

Batch 1

Triple Super Phosphate (TSP) was used as a soil additive to treat the contaminated soil that was removed from Hakalau Beach Park. To evaluate the effectiveness of TSP as a stabilizing agent on lead-impacted Hakalau soil, two (2) DUs that have previously been identified with high concentrations of lead were resampled to provide media for the bench test study.

TSP is a commercially available soil fertilizer than can also be used to reduce the mobility of lead in the soil. Phosphate is a compound made up of phosphorous (P) and

oxygen (O) and phosphorous atoms that act as an anion that binds readily to lead cations. TSP can also be combined with different ions to impact solubility under acidic conditions. It is most commonly used as fertilizer produced from phosphate rock and phosphoric acid and is technically known as calcium dihydrogen phosphate and monocalcium phosphate, [Ca $(H_2PO_4)_2$.H₂O]. Treatability studies for in situ lead stabilization that used phosphate-based binders found a significant reduction in the bioavailable lead in soil when it was amended with TSP (Hettiarachchi et al. 2001 and Gene 2008).

Batch 2

Portland Cement is composed of 60-67% Lime (CaO), 17-25% Silica (SiO2), 3-8% Alumina (Al2O3), 0.5-6% Iron oxide (Fe2O3), and 0.1-4% Magnesia (MgO). It is a global commodity used in making cement and is widely available in bulk quantities to supply the construction industry. Portland cement is the binding agent in industrial concrete and is alkaline and a good candidate for buffering acids (pH of 11). This property was evaluated as a way to reduce the mobility of lead in the bulk soil sample collected for Hakalau using a cost-effective ubiquitous material. The Portland Cement was also selected as a potential way to convert loose soil into a potentially structurally sound material that would be amenable to be put into a consolidation cell or a form that would be easily transported to a facility for disposal.

Methodology

As part of the remedial alternative evaluation, in May of 2022, KPC collected a bulk sample using ISM from the most heavily impacted areas below the bridge on the southern side of the Hakalau stream bench from DUs 32 and 33 which had been documented in previous investigations as having the highest total lead concentrations in the project area (DUs 32 and 33 were composed of the consolidated DUs 1, 2, 11, and 21).

The two (2) DUs sampled for the bench test material were DU32 and DU33, and these are confirmed as the locations for some of the highest lead concentrations in the Hakalau Bridge study area. Surface soil samples (0-3 inches bgs) were collected via the incremental sampling method (ISM) method from both DUs which provided a bulk sample that was used for the treatability test.

Fifty 200-gram incremental sampling locations were collected which resulted in 10 kg of soil collected from DUs 32 and 33 and placed into a new 5-gallon plastic bucket. On July 26th, 2022, all of the soil (a total of 23.290 kg) was poured into a 14-gallon openhead poly drum and was hand-pushed (rolled) for 30-minutes to ensure all soil was completely homogenized before the TSP addition.

After the soil was homogenized for the Batch 1 evaluation, aliquots of each bulk sample were submitted for the total lead and then TCLP lead. Each Aliquot will be a multi-

increment subsample from the bulk sample this will consist of 50 twenty (2) gram increments (1 kg total sample).

A 50-lb bag of granulated TSP was purchased locally on the island for the TSP addition. Using a large mill, the TSP material was ground down to a fine powder-like material. On July 28th, 2022, two (2) KPC team members conducted the bench test process. One (1) kg of TSP was weighed out per one (1) kg of soil sample. TSP was added at increments of 5% (50 grams), 10% (100 grams), 15% (150 grams), and 20% (200 grams). The TSP additives were mixed thoroughly with each soil sample by kneading the mixture in a bowl with gloved hands. Following the mixing, the treated soil samples were placed into plastic Ziploc Bags with their unique sample ID reflecting the TSP addition percentage in preparation for laboratory analysis.

Next, the second batch (Batch 2) of soil samples was weighed out and placed in five (5) trays for the Portland Cement addition. Portland Cement was added to the sample to decrease the leachability properties of the lead. A total of 500 grams of soil was weighed out and TSP was added at increments of 0 grams, 25 grams, 50 grams, 75 grams, and 100 grams (a total of 5 aliquots of soil). Next, the Portland cement was added following a ratio of 1 to 3, Portland cement to each of the 5 aliquots TSP treated soil. Water was not added since there was enough soil moister to allow complete mixing to achieve the desired consistency (a thick slurry resembling wet cookie dough). The mixture of soil, TSP, and Portland cement was then formed into cylindrical shapes, allowed to cure for 72 hours, crushed, bagged, and sent to the lab for TCLP analysis to evaluate whether a lead is stabilized using Portland Cement and TSP-treated soil mixture.

All samples were bagged and shipped overnight to Eurofins Calscience, Tustin, California for lead-level and TCLP analysis testing.

Results

Based on the laboratory results, the TSP addition was successful in reducing the lead concentrations in the soil. Table 1 presents the results from the bench test study. Sample ID HAKA_BT_A and the duplicate sample (HAKA_BT_AZ) were control samples and therefore were not treated with TSP and were analyzed for total lead, TCLP lead, and SPLP west lead. The control showed total lead results of approximately 11,000 mg/kg and TCLP results of approximately 23 mg/l. Both values were over the Reporting Limits. The lowest addition of TSP was 5%, and that resulted in TCLP lead concentrations below the laboratories method reporting limit (Non-Detectable [ND]).

Batch 2 – Portland Cement showed similar efficacy, where soil with 0% TSP and 33% by mass of Portland cement added to the aliquot, TCLP results were also ND. These results show that the addition of TSP and Portland Cement effectively reduces lead concentrations in the lead-contaminated soil.

Conclusions

The study concluded that TSP was effective at reducing the toxicity of the lead in the areas where the highest total lead. The total lead concentrations from ISM soil samples collected from DU32 and DU33 were 11,400 mg/kg and had a respective TCLP result of 25.6 mg/l, which is well above the RCRA toxicity characteristic for the lead of 5.0 mg/L. However, if TSP is added to an aliquot from this same ISM from DU32 and DU33 at a concentration of just 5% of the total soil mass, the TCLP results were shown to reduce concentrations below the laboratories method reporting limit (or in other words non-detectable dissolved lead). This was achieved without any additional pH buffering additives and demonstrated that immobilization/ stabilization using TSP is highly effective and has ratios that are economically feasible.

Portland Cement was added to the impacted soil at a typical mass ratio for making concrete (1:3). Samples of the soil were weighed, and Portland Cement was mixed with the soil, no other sand or gravel was added and because the soil already had a high moisture content, water was not added to the mix. After the mix was cured, samples were pulverized and submitted to Eurofins for analysis. TCLP analysis on this final material also showed that Portland cement can reduce the TCLP result to below the laboratory reporting limit without the addition of TSP. All of the aliquots of the primary ISM soil sample for DUs 32 to 33 to which Portland Cement was added exhibited structural properties similar to a bone-dry terracotta clay (unfired variety). It was durable but could be pulverized back into a powder with relative ease using a 50 lb millstone.

The bench test demonstrated that the addition of TSP and Portland Cement to reduce the leachability of lead is effective and could be used as a treatability recommendation for the lead-contaminated soil at Hakalau Beach Park. The TSP addition is a costeffective on-site solution for remedial action for the lead-contaminated soil and could be applied on a larger scale to successfully treat contaminated DUs in the Beach Park.

Sample ID	Sample Treatment Description	Analysis	Unit	Results	RL
		Total Lead	mg/kg	10,900	8.0
HAKA_BT_A	Not treated with TSP	TCLP Lead	mg/l	25.6	0.500
		SPLP West Lead	mg/l	4.32	0.0300
	Dunlicate sample to	Total Lead	mg/kg	11,400	8.0
HAKA_BT_AZ		TCLP Lead	mg/l	22.9	0.500
		SPLP West Lead	mg/l	NA	-
HAKA_BT_B	+5% TSP	TCLP Lead	mg/l	ND	0.500
HAKA_BT_C	+10% TSP	TCLP Lead	mg/l	ND	0.500
HAKA_BT_D	+15% TSP	TCLP Lead	mg/l	ND	0.500
HAKA_BT_E	+20% TSP	TCLP Lead	mg/l	ND	0.500
HAKA_BTPC_A	+0% TSP with 33% by mass Portland cement	TCLP Lead	mg/l	ND	0.500
HAKA_BTPC_B	+5% TSP with 33% by mass Portland cement	TCLP Lead	mg/l	ND	0.500
HAKA_BTPC_C	+10% TSP with 33% by mass Portland cement	TCLP Lead	mg/l	ND	0.500
HAKA_BTPC_D	+15% TSP with 33% by mass Portland cement	TCLP Lead	mg/l	ND	0.500
HAKA_BTPC_E	+20% TSP with 33% by mass Portland cement	TCLP Lead	mg/l	ND	0.500

Notes:

200 mg/kg Lead or greater exceeds the State of Hawaii Department of Health Tier I EALs, Direct Exposure Action Levels - <u>Unrestricted</u> Land-Use Scenario presented in Table I-1 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

800 mg/kg Lead or greater exceeds the State of Hawaii Department of Health Tier I EALs, Direct Exposure Action Levels - <u>Commercial/Industrial</u> Land-Use Scenario presented in Table I-2 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition).

800 mg/kg Lead or greater exceeds the State of Hawaii Department of Health Tier I EALs, Direct Exposure Action Levels - <u>Construction/Trench Worker</u> Exposure Scenario presented in Table I-3 of the Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2017 Edition). mg/kg = milligram(s) per kilogram (i.e. parts per million (ppm)).

mg/l = milligram(s) per knogram (i.e. parts per million (ppm)).

NA = Not Analyzed. Indicates that the sample was not requested to be analyzed by the laboratory for the specified analysis.

ND = Not Detected. Indicates that the analyte was not detected in concentrations above the laboratories method reporting limit.

RL= Reporting Limit.